Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Попов Анатолий Николаевич

Должность: директор

Дата подписания: 03.03.2022 14:18:18 Уникальный программный ключ:

1e0c38dcc0aee73cee1e5c09c1d5873fc7497bc8

Приложение 9.7. ОПОП-ППССЗ по специальности 27.02.03 Автоматика и телемеханика на транспорте (железнодорожном транспорте)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.08 ЦИФРОВАЯ СХЕМОТЕХНИКА

основной профессиональной образовательной программы программы подготовки специалистов среднего звена по специальности 27.02.03 Автоматика и телемеханика на транспорте (железнодорожном транспорте)

> Базовая подготовка среднего профессионального образования (год приема: 2021)

Разработчик(и):		
ОТЖТ ОрИПС – филиала СамГУПС	преподаватель	<u>Дидрих Л.А.</u>
(место работы)	(занимаемая должность)	(инициалы, фамилия)

Содержание

1. Паспорт комплекта контрольно-оценочных средств	4
2. Результаты освоения учебной дисциплины, подлежащие проверке	5
3. Оценка освоения учебной дисциплины	7
3.1. Формы и методы оценивания	7
3.2. Типовые задания для оценки освоения учебной дисциплины	12
4. Контрольно-оценочные материалы для итоговой аттестации по учебной дисциплине	28
5. Приложения. Задания для оценки освоения дисциплины	.32

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины ОП.08 Цифровая схемотехника обучающийся должен обладать предусмотренными ФГОС по специальности 27.02.03 Автоматика и телемеханика на транспорте (железнодорожном транспорте) следующими умениями, знаниями, которые формируют профессиональную компетенцию, и общими компетенциями:

- У1. Использовать типовые средства вычислительной техники и программного обеспечения
- У2. Проводить контроль и анализ процесса функционирования цифровых схемотехнических устройств по функциональным схемам
 - 31. Виды информации и способов ее представления в ЭВМ
 - 32. Алгоритмы функционирования цифровой схемотехники
- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ОК 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности
- ПК 1.1 Анализировать работу станционных, перегонных, микропроцессорных и диагностических систем автоматики по принципиальным схемам. Формой аттестации по учебной дисциплине является экзамен.

2. Результаты освоения учебной дисциплины, подлежащие проверке 2.1. В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих компетенций:

Таблица 1.1

Результаты обучения: умения, знания и общие компетенции	Показатели оценки результата	Форма контроля и оценивания
Уметь: У1. Использовать типовые средства вычислительной техники и программного обеспечения У2. Проводить контроль и анализ процесса функционирования цифровых схемотехнических устройств по функциональным схемам ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам ОК 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности ПК 1.1 Анализировать работу станционных, перегонных, микропроцессорных и диагностических систем автоматики	работает со стендами-макетами с образцами цифровых интегральных микросхем	- экспертное наблюдение и оценка на лабораторных и практических занятиях, решение ситуационных задач
по принципиальным схемам. ПК 1.1 Анализировать работу станционных, перегонных, микропроцессорных и диагностических систем автоматики по принципиальным схемам.	- работает с комплектами монтажных инструментов (набор отверток, плоскогубцы, бокорезы, паяльник с принадлежностями для пайки, пинцеты, измерительные щупы); - работает с комплектами элементов и компонентов: цифровые интегральные микросхемы,резисторы (постоянные и переменные), конденсаторы (постоянные и переменные) и другие элементы цифровой схемотехники.	- экспертное наблюдение на практических занятиях, оценка выполнения графических и контрольных работ
Знать:		
3 1 виды информации и способов ее представления в ЭВМ	знает виды информации и способов ее представления в ЭВМ	-различные виды опроса, выполнение индивидуальных домашних

				заданий решени	_
				-	
				ситуаци	ЮННЫХ
				задач,	
				тестиро	вание
32 алгоритмы фу	нкционирования	знает алгоритмы		-различ	ные
цифровой схемотехн	ики	функционирования	цифровой	виды	опроса,
		схемотехники		выполн	ение
				индиви,	дуальных
				домашн	их
				заданий	i,
				решени	e
				ситуаци	ЮННЫХ
				задач,	
				тестиро	вание

3. Оценка освоения учебной дисциплины:

3.1. Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине Цифровая схемотехника, направленные на формирование общих и профессиональных компетенций. Итоговой формой контроля является экзамен.

Экзамен проводится в письменной форме и состоит из 3 групп заданий.

Часть А

Эта часть состоит из 10 заданий (1-10). К каждому заданию даны варианты ответов, из которых только один верный. Каждое правильно выполненное задание части A оценивается в 1 балл.

Часть В

При выполнении заданий части В, необходимо дать развернутый ответ. Правильно выполненное задание части В оценивается в 5 баллов.

Часть С

При выполнении задания части С, соберите схему по заданию. Правильно выполненное задание части С оценивается в 10 баллов.

Критерии оценки:

Отметка (оценка)	Количество правильных ответов в баллах
5 (отлично)	25-30
4 (хорошо)	20-24
3 (удовлетворительно)	15-19
2 (неудовлетворительно)	0-14

Контроль и оценка освоения учебной дисциплины по темам (разделам)

Таблица 2.2

Элемент учебной	Формы и методы контроля							
дисциплины	Текущий контр	ООЛЬ	Рубежный контроль		Промежуто	очная аттестация		
	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяем ые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3		
Раздел 1. Арифметические основы цифровой схемотехники					Экзамен	У2, 32 ОК 1,ОК 2 ПК 1.1		
Тема 1.1. Формы представления числовой информации в цифровых устройствах		У2, 32 ОК 1,ОК 2 ПК 1.1						
Тема 1.2. Арифметические операции с кодированными числами	Практическое занятие №1	У2, 32 ОК 1,ОК 2 ПК 1.1						
Раздел 2. Логические основы цифровой схемотехники					Экзамен	У2, 32 ОК 1,ОК 2 ПК 1.1		
Тема 2.1. Функциональная логика	Практическое занятие №2	У2, 32 ОК 1,ОК 2 ПК 1.1						
Тема 2.2. Основы синтеза цифровых логических устройств	Практическое занятие №3	У2, 32 ОК 1,ОК 2 ПК 1.1						
Тема 2.3. Цифровые интегральные микросхемы		У2, 32 ОК 1,ОК 2 ПК 1.1						
Тема 2.4. Типовые устройства обработки цифровой		У2, 32 ОК 1,ОК 2 ПК 1.						

информации				
Раздел 3. Последовательностные цифровые устройства —			Экзамен	У2, 32 ОК 1,ОК 2 ПК 1.1
цифровые автоматы				111(1.1
Тема 3.1. Цифровые триггерные схемы	Лабораторное занятие №1	У2, 32 ОК 1,ОК 2 ПК 1.1		
Тема 3.2. Цифровые счетчики импульсов	Лабораторное занятие №2	У2, 32 ОК 1,ОК 2 ПК 1.1		
Тема 3.3. Регистры	Лабораторное занятие №3	У2, 32 ОК 1,ОК 2 ПК 1.1		
Раздел 4. Комбинационные цифровые устройства			Экзамен	У2, 32 ОК 1,ОК 2 ПК 1.1
Тема 4.1. Шифраторы и дешифраторы	Лабораторное занятие №4	У2, 32 ОК 1,ОК 2 ПК 1.1		
Тема 4.2. Преобразователи кодов		У2, 32 ОК 1,ОК 2 ПК 1.1		
Тема 4.3. Мультиплексоры идемультиплексоры	Лабораторное занятие №5	У2, 32 ОК 1,ОК 2 ПК 1.1		
Тема 4.4. Комбинационные двоичные сумматоры	Лабораторное занятие №6	У2, 32 ОК 1,ОК 2 ПК 1.1		
Тема 4.5. Цифровые компараторы		У2, 32 ОК 1,ОК 2 ПК 1.1		
Раздел 5. Цифровые			Экзамен	<i>Y2, 32</i>

запоминающие устройства Тема 5.1.Классификация и параметры запоминающих устройств. ОЗУ, ПЗУ,		У2, 32 ОК 1,ОК 2 ПК 1.1			ОК 1,ОК 2 ПК 1.1
ППЗУ Раздел 6. Аналого- цифровые (АЦП) и цифро- аналоговые преобразователи (ЦАП)		У2, 32 ОК 1,ОК 2 ПК 1.1		Экзамен	У1, 31, ОК 1,ОК 2, ОК9
информации Тема 6.1. Цифро- аналоговые преобразователи (ЦАП) кода в напряжение		У1, 31, ОК 1,ОК 2, ОК9			
Тема 6.2. Аналого- цифровые преобразователи (АЦП) информации		У1, 31, ОК 1,ОК 2, ОК9			
Раздел 7. Микропроцессоры и микропроцессорные устройства				Экзамен	У2, 32 ОК 1,ОК 2 ПК 1.1
Тема 7.1. Общие сведения о микропроцессорах и микропроцессорных системах. Микропроцессорные устройства	Самостоятельная работа обучающихся	У2, 32 ОК 1,ОК 2 ПК 1.1			

4. Контрольно-оценочные материалы для итоговой аттестации по учебной дисциплине

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических и лабораторных занятий, различных видов опроса, тестирования, выполнения обучающимися индивидуальных заданий, решения ситуационных задач. Итоговая аттестация в форме экзамена. Студент допускается к сдаче экзамена, если выполнены на положительную оценку все лабораторные и практические работы.

І. ПАСПОРТ

Назначение:

ФОС предназначен для контроля и оценки результатов освоения учебной дисциплины Цифровая схемотехника для студентов специальности 27.02.03 Автоматика и телемеханика на транспорте железнодорожном транспорте).

Умения:

- У1. Использовать типовые средства вычислительной техники и программного обеспечения.
- У2. Проводить контроль и анализ процесса функционирования цифровых схемотехнических устройств по функциональным схемам.

Знания:

- 31. Виды информации и способов ее представления в ЭВМ.
- 32. Алгоритмы функционирования цифровой схемотехники.

Вопросы для подготовки к экзамену

- 1. Формы представления числовой информации в цифровых устройствах
- 2. Арифметические операции с кодированными числами
- 3. Функциональная логика
- 4. Основы синтеза цифровых логических устройств
- 5. Цифровые интегральные микросхемы
- 6. Типовые устройства обработки информации
- 7. Цифровые счетчики импульсов
- 8. Цифровые триггерные схемы
- 9. Задачи устройств цифровой техники. Понятие систем счисления чисел. Двоичная система счисления.
 - 10. Алгебра Буля. Понятие функции Буля. Основные аксиомы алгебры Буля.
 - 11. Функции Буля одного и двух аргументов. Правило де Моргана.
 - 12. Представление Функций Буля таблицей истинности (пример)
 - 13. Минтермы и макстермы функции Буля.
- 14. Совершенные дизъюнктивная и конъюнктивная формы представления функции Буля (СДНФ, СКНФ)
 - 15. Карты Карно и их кодирование. Применение карт для описания функций Буля.
 - 16. Принципы минимизация функций Буля.
- 17. Комбинационные цифровые устройства. Последовательность синтеза комбинационных устройств.
- 18. Синтез базовых комбинационных схем: пороговой ячейки, дешифратора, шифратора, мультиплексора, сумматора, схемы сравнения.
 - 19. Принцип работы последовательностных цифровых устройств.
 - 20. Триггеры на цифровых элементах. Классификация триггеров.
- 21. Асинхронный и синхронный триггеры RS-типа. Закон функционирования. Схемная реализация триггеров
- 22. Синхронный триггеры D-типа. Закон функционирования. Схемная реализация триггера. Методы синхронизации.
 - 23. Синхронный ЈК-триггер. Закон функционирования.

- 24. Счетный Т-триггер. Закон функционирования. Построение триггера на основе D и JК-триггеров.
 - 25. Регистры памяти и сдвига. Назначение регистров. Построение регистров.
- 26. Цифровые счетчики. Параметры счетчиков. Построение кольцевых счетчиков на основе регистров сдвига.
 - 27. Двоичные счетчики. Типы двоичных счетчиков и их построение.
- 28. Построение двоично-десятичных счетчиков. Счетчики с произвольным коэффициентом счета.

П.	ЗАЛА	НИЕ	ПЛЯ	ЭКЗ	AMEH	УЮП	ΙΕΓΟ	СЯ
	~ 			O 1 C 3				·

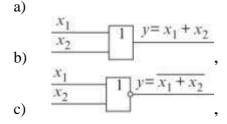
КУ – 54

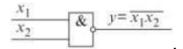
ОТЖТ – структурное подразделение ОрИПС – филиала СамГУПС

Рассмотрено предметной (цикловой) комиссией «	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № ОП.08. Цифровая схемотехника	УТВЕРЖДАЮ Зам.директора по УР
Председатель ПЦК	Группа Семестр <u>4</u>	ФИО «»20г.

Оцениваемые компетенции:

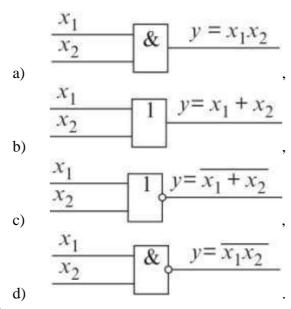
ОК 1, ОК 2, ОК 9, ПК 1.1, ПК 1.2, ПК 1.3, ПК 2.1, ПК 2.2, ПК 2.3, ПК 2.4, ПК 2.5, ПК 2.6, ПК 2.7, ПК 3.1, ПК 3.2, ПК 3.2.


Инструкция по выполнению заданий:


Внимательно прочитайте задание. Время выполнения заданий – 45 минут

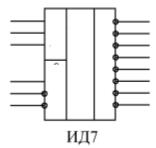
Часть А

Эта часть состоит из 10 заданий (1-10). К каждому заданию даны варианты ответов, из которых только один верный. Каждое правильно выполненное задание части A оценивается в 1 балл.


- 1. Определите сумматоры по способу организации цепей переноса?
 - а) с последовательным переносом,
 - b) с групповой структурой,
 - с) со сквозным переносом,
 - d) с параллельным переносом.
- 2. Определите дешифратор по способу представления?
 - а) симметричные;
 - b) круглые;
 - с) нелинейные;
 - d) линейные и прямоугольные.
- 3. Выберите, на какой схеме изображено логическое отрицание умножения (штрих Шеффера)?

- 4. Выберете изображение логического сложения?
 - a) \/,

 - c) -
- 5. Какое из приведенных ниже определений аналогового сигнала правильное?
- а) это непрерывный сигнал, который может принимать любые значения в определенных пределах,
 - b) это сигнал, несущий в себе какую-то информацию,
- с) это сигнал, приходящий на электронную систему извне и искажающий полезный сигнал.
 - 6. Какое из приведенных ниже определений сумматора правильное?
- а) узел, который последовательно распределяет по выходам сигнала поступающего на вход 1,
- b) это логический операционный узел, выполняющий арифметическое сложение кодов двух чисел,
 - с) это логическая схема, имеющая два входа и два выхода.
 - 7. Какое из приведенных ниже определений триггера правильное?
- а) класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов,
- b) устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход,
- с) релаксационный генератор сигналов электрических прямоугольных колебаний с короткими фронтами.
 - 8. Выберите, на какой схеме изображено логическое отрицание сложения (стрелка Пирса)?

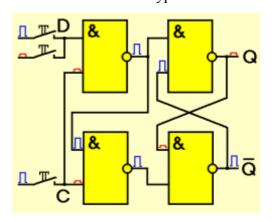

- 9. Какой сигнал может плавно изменяться и принимать любые значения в определенных пределах.
 - а) цифровой сигнал,
 - b) аналоговый сигнал,
 - с) электрический сигнал,
 - d) синхронизирующий сигнал.
- 10. Какой образуется код, если значение разрядов после точки инвертируется, а код знакового разряда равен 1.

- а) прямой код,
- b) обратный код,
- с) дополнительный код,
- d) модифицированный код.

Часть В

При выполнении заданий части В, необходимо дать развернутый ответ. Правильно выполненное задание части В оценивается в 5 баллов.

В1. Перенести схему на контрольный лист ответов и сделайте к ним необходимые подписи.


В2. С помощью основных равносильностей доказать, что

$$\overline{y \vee (x \, \overline{y} \vee \overline{y})} \to x(x \vee x \, z) = 1$$

Часть С

При выполнении задания части С, укажите порядок выполнения операций по исходному условию. Правильно выполненное задание части С оценивается в 10 баллов.

Условие задачи - на схеме изображен D-триггер. Ваша задача установить на его прямом выходе высокий, а на инверсном низкий логический уровни.

Критерии оценки:

Отметка (оценка)	Количество правильных ответов в баллах
5 (отлично)	25-30
4 (хорошо)	20-24
3 (удовлетворительно)	15-19
2 (неудовлетворительно)	0-14

Преподаватель: Рымашевская С.Э.

ІІІ. ПАКЕТ ЭКЗАМЕНАТОРА

III a. УСЛОВИЯ

На экзамен допускаются студенты, не имеющие текущих задолженностей по дисциплине Цифровая схемотехника.

Одновременно в аудитории могут присутствовать не более 5 студентов. На подготовку теоретической части отводится 45 минут. На работу на стенде ЦС-02 отводится 10 минут.

Количество вариантов задания для экзаменующегося – 25.

Время выполнения задания – 45 мин.

Оборудование: универсальный стенд ЦС-02 и набор микросхем.

Эталоны ответов ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №

Часть А

- 1. a
- 2. d
- 3. c
- 4. b
- 5. a
- 6. b
- 7. a
- 8. c
- o. c
- 9. b
- 10. a

Часть В

Задание 1

Решение 1.1 Применяя закон поглощения и закон склеивания, получим:

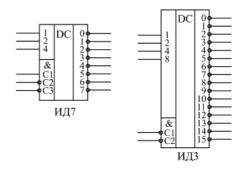
$$F = (x_2 \lor x_2 x_3) \to (x_1 x_3 \lor x_1 \overline{x_3}) = x_2 \to x_1$$
.

Так как существует такая формула, реализующая эту булеву функцию, в которой отсутствует x_3 , то эта переменная является фиктивной.

Решение 1.2 Построим таблицу истинности для \overline{xy} и $\overline{x} \vee \overline{y}$:

х	У	хy	\overline{xy}	\overline{x}	\overline{y}	$x \vee y$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Так как в таблице истинности булевым функциям \overline{xy} и $\overline{x} \lor \overline{y}$ соответствуют одинаковые столбцы, то формулы \overline{xy} и $\overline{x} \lor \overline{y}$ равносильны.


Решение 1.3 Применяя закон склеивания (в обратном порядке, то есть $yz = x \ yz \lor x \ yz$) и дистрибутивность (то есть вынесем за скобки xy и $x \ z$), получим:

$$xy \lor \overline{x}z \lor yz = xy \lor \overline{x}z \lor xyz \lor \overline{x}yz = xy(1\lor z) \lor \overline{x}z(1\lor y) = xy \lor \overline{x}z$$
.

Решение 1.4 Применяя основные равносильности получим:

$$\overline{y \lor (x \ \overline{y} \lor \overline{y})} \to x(x \lor x z) = \overline{y \lor \overline{y}} \to xx = \overline{1} \to x = 0 \to x = \overline{0} \lor x = 1 \lor x = 1.$$

Задание 2

Задание 3

Оценивается правильность работы со стендом ЦС-02 и соблюдение техники безопасности. Экзаменационная ведомость (или оценочный лист).

Шб. КРИТЕРИИ ОЦЕНКИ

Часть А

Эта часть состоит из 10 заданий (1-10). К каждому заданию даны варианты ответов, из которых только один верный. Каждое правильно выполненное задание части A оценивается в 1 балл.

Часть В

При выполнении заданий части В, необходимо дать развернутый ответ. Правильно выполненное задание части В оценивается в 5 баллов.

Часть С

При выполнении задания части С, соберите схему по заданию. Правильно выполненное задание части С оценивается в 10 баллов.

Критерии оценки:

Отметка (оценка)	Количество правильных ответов в баллах
5 (отлично)	25-30
4 (хорошо)	20-24
3 (удовлетворительно)	15-19
2 (неудовлетворительно)	0-14