Документ подписан простой электронной подписью Информация о владельце:
ФИО: Попов Анатомий Николеская и МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: директору
Дата подписания: 18:05:2021 09:30:55

ИМИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
Уникальный программный клюбедеральное госуда РСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
1e0c38dcc0aeec73ceec1e5c09c1c15c77f77407bc8

APCТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Приложение 2 к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Теоретические основы надежности

(наименование дисциплины (модуля)

Направление подготовки / специальность 23.05.03 Подвижной состав железных дорог (код и наименование)

Направленность (профиль)/специализация Вагоны, Локомотивы, Электрический транспорт железных дорог (наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции					
ПК-4					
способностью использовать математические и статистические методы для оценки и анализа показателей безопасности					
и надежности подвижного состава					

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные материалы
способностью использовать математические и статистические методы для оценки и анализа показателей безопасности и надежности подвижного состава	Обучающийся знает: об основных понятиях надежности, уравнениях связи показателей надежности, числовых характеристиках безотказности невосстанавливаемых объектов, математических моделях теории надежности и законах распределения наработки Обучающийся умеет: производить статистическую обработку результатов испытаний с целью дальнейшего применения полученных умений в математических и научнотехнических расчетах Обучающийся владеет: пониманием социальной значимости своей будущей профессии; навыками разработки требований к конструкции подвижного состава, оценки технико-экономических параметров и удельных показателей подвижного состава	материалы Тесты в ЭОС Сам ГУПС Аналитическое задание Аналитическое задание

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) выполнение заданий в ЭИОС СамГУПС (выполнение тестов);
- 2) собеседование (ответ, комментарии по выполненным заданиям из МУ).

2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Ī	Код и наименование	Образовательный результат				
	компетенции					
	ПК-4	Обучающийся знает:				
	способностью использовать	об основных понятиях надежности, уравнениях связи показателей				
	математические и	надежности, числовых характеристиках безотказности невосстанавливаемых				
	статистические методы для	объектов, математических моделях теории надежности и законах				
	оценки и анализа показателей	распределения наработки				

¹Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

безопасности и надежности подвижного состава

Укажите соотношение, которое определяет статистическую оценку вероятности безотказной работы для массовых объектов:

1.
$$P(t) = 1 - \frac{1}{N} \sum_{k=1}^{N} \eta(t - t_k)$$

2.
$$P(t) = \exp(-\lambda \cdot t)$$
;

$$P_0(t) = 1 - P_n(t) = 1 - \frac{(\lambda t)}{n} e^{-\lambda t}$$

$$\lambda = \frac{N}{L \cdot t}$$

ПК-4

способностью использовать математические и статистические методы для оценки и анализа показателей безопасности и надежности подвижного состава

Обучающийся умеет:

производить статистическую обработку результатов испытаний с целью дальнейшего применения полученных умений в математических и научнотехнических расчетах

1. Проанализируйте показатели безопасности невосстанавливаемых объектов. Вероятность безотказной работы, интенсивность отказов.

ПК-4

способностью использовать математические и статистические методы для оценки и анализа показателей безопасности и надежности подвижного состава

Обучающийся владеет:

пониманием социальной значимости своей будущей профессии; навыками разработки требований к конструкции подвижного состава, оценки технико-экономических параметров и удельных показателей подвижного состава

Проанализируйте показатели надежности восстанавливаемых объектов, среднее время восстановления Тв, коэффициент готовности Кг

2.2 Типовые задания для оценки навыкового образовательного результата Вопросы к зачету:

- 2. Показатели надежности. Безопасность и безотказность.
- 3. Показатели безопасности невосстанавливаемых объектов. Вероятность безотказной работы, интенсивность отказов.
- 4. Показатели надежности: вероятность отказа, плотность распределения наработки до отказа, средняя наработка до отказа Тср.
- 5. Показатели надежности восстанавливаемых объектов, параметр потока отказов $\omega(t)$, вероятность восстановления работоспособного состояния S(t).
- 6. Показатели надежности восстанавливаемых объектов, среднее время восстановления Тв, коэффициент готовности Кг.
- 7. Показатели безопасности технических объектов, вероятность безопасной работы Pб(t), вероятность опасного отказа Qon(t).
- 8. Показатели безопасности технических объектов, интенсивность опасных отказов λ от, частота опасных отказов ω оп(t), коэффициент безопасности Кб.
- 9. Законы распределения времени между отказами, экспоненциальный закон распределения надежности и его характеристики.
- 10. Законы распределения времени между отказами, нормальный закон распределения, закон Релея, их характеристики.
- 11. Законы распределения времени между отказами, Гамма распределения Вейбулла.
- 12. Простейший поток отказов, его описание по закону Пуассона.

- 13. Методы расчета надежности. Расчет надежности невосстанавливаемых систем и нерезервированных.
- 14. Методы расчета надежности. Расчет надежности невосстанавливаемых резервированных систем.
- 15. Методы расчета надежности. Расчет надежности сложной системы по функциям алгебры логики (ФАЛ).
- 16. Виды резервирования и методы расчета раздельно резервированных систем с постоянно включенным резервом.

Перечень примерных вопросов к контрольной работе № 1 «Основные термины и определения теории надежности»

Контрольная работа № 1 направлена на оценку знаний студентов основных терминов и определений, применяющихся для описания надежности технических систем.

Все вопросы разбиты на несколько групп.

Первая группа – вопросы на знание определений основных терминов и показателей надежности. Основное внимание необходимо обращать на соответствие приводимых определений ГОСТ Р 53480-2009 «Надежность в технике. Термины и определения». Примерные вопросы первой группы:

1.	Написать	определение:	Безотказность	_	это			
2.	Написать оп	пределение: Веро	ятность безотказ	вной р	аботы – это			
3. Написать определение: Коэффициент готовности – это								
4.	Написать	определение:	Долговечнос	ТЬ	– это			
5.	Написать	определение:	Среднее врем	l RM	восстановления	– это		•

Вторая группа — задачи на определение показателей надежности. Необходимо написать формулу для нахождения искомого показателя с расшифровкой, входящих в формулу данных. Типовые задачи второй группы:

- **6. Решить задачу**: На испытание поставлено 500 однотипных изделий. За 100 часов работы отказало 60 изделий, за последующие 5 часов еще 6 изделий. Определить статистическую оценку вероятности отказа за период времени (100, 105).
- **7. Решить задачу:** Определить средний срок сохраняемости объекта, если при хранении изделий нарушение их работоспособности произошло в периоды времени 2100, 2200, 2050 и 2180 суток.
- **8. Решить** задачу: На эксплуатацию поставлено 250 изделий. На моменты времени t_1-t_3 зафиксировано определенное количество отказов (таблица). Остальные изделия не отказали. Определить средний ресурс.

t _i , час	50	100	150
n(t _i)	5	8	11

- Решить задачу: На испытание поставлено 500 однотипных изделий. За 100 часов работы отказало 60 изделий. Определить статистическую оценку вероятности безотказной работы за период времени (0, 100).
- 10. Решить задачу: На промысловые испытания поставлено 3 вертлюга. В ходе испытаний у первого насоса было зафиксировано 37 отказа, у второго – 29 отказов, у третьего – 48 отказов. Суммарная наработка на отказ для первого вертлюга составила 3100 часов, для второго – 2200 часов, для

			работоспособного	состояния	установки	для
наплавки:		неготовности	<u>-</u>	поста для	ручной	дуговой
состояния объект	га. В данном		привести конкретно внимание на ой группы:			_
б) безотказно	СТЬ	г) долговечности		е) надежность		
а) готовность		в) ремонтноприг	годность	д) сохраняемост	Ъ	
14. Определить к ответы):	какому сво	йству относится і	соэффициент готоі	вности (выделить	правильный с	ответ или
в) коэффицис	ент готовнос	ети е) гамма-процентный	і срок службы		
б) вероятност	гь отказа	Γ) коэффициент техн	ического использ	ования	
а) средний ре	ecypc	д) вероят	тность безотказной р	работы		
13.Выделить по	казатели, от	гносящиеся к свой	йству готовности (в	ыделить правильн	ый ответ или о	ответы):
б) безотказно	СТЬ	г) долговечності		е) надежность		
а) готовность		в) ремонтоприго	дность	д) сохраняемост	Ъ	
обвести, подчеры Примеры тестовы	кнуть или з ых заданий:	ачеркнуть номер	правильного ответ редний ресурс (выд	а (может быть н	есколько прав	ильных)
Третья группа в	ОП р осов — Те	есты Необхолимс	о выделить правиль	ыный ответ или от	гветы пюбым	знаком –
б)		; Γ)			
a)		; в)		;	
11. Дать характ классификаци	_	оказателю надеж	ности, определяемо	ому в задаче (по	различным пр	ризнакам
характеристику в б) какое количе данных; г) класси	находимого ество свойст ификация по	в задаче показате гв характеризует количеству расс	ополнительный воля надежности: а) во (единичный или матриваемых объект	к какому свойству комплексный); в гов.	относится по) источник по	казатель элучения

наплавки:	наплавки:					
16.Привести	пример	частично	работоспособного	состояния	установки	для
напыления:						

наплавки:

В каждом варианте контрольной работы – 10 вопросов из всех четырех групп, правильный ответ на которые оценивается в 1 балл. Максимальное количество баллов за контрольную работу № 1 – 10 баллов. Контрольная работа считается сданной положительной при полученном количестве баллов 6-10, в противном случае работа подлежит пересдаче.

В случае если контрольная работа будет написана позже установленного срока по неуважительной причине – оценка снижается на 2 балла.

Фонд тестовых заданий

соотношение, которое определяет статистическую оценку вероятности безотказной работы для массовых объектов:

1.
$$P(t)=1-\frac{1}{N}\sum_{k=1}^{N}\eta(t-t_k)$$
;

2.
$$P(t) = \exp(-\lambda \cdot t)$$

2.
$$P(t) = \exp(-\lambda \cdot t)$$
;
 $P_0(t) = 1 - P_n(t) = 1 - \frac{(\lambda t)}{n} e^{-\lambda t}$
3.

$$\lambda = \frac{N}{L \cdot t}$$

Укажите верное соотношение определяющее параметр потока отказов:

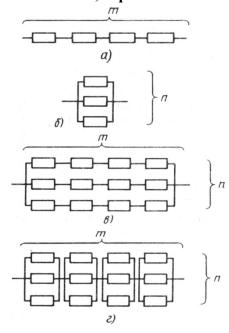
1.
$$\mu(t) = \lim_{\Delta t \to 0} \frac{E[\nu(t + \Delta t) - \nu(t)]}{\Delta t}$$

$$\bar{\mu}(t) = \frac{E[\nu(t_2) - \nu(t_1)]}{t_2 - t_1}$$
2.

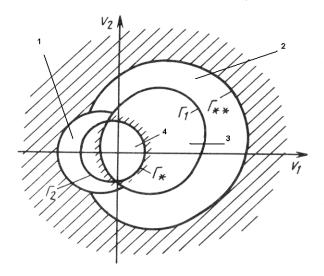
3.
$$F(T)=1-P(T)$$

$$\stackrel{i}{P}(t) = [N - n(t)] \times \frac{1}{N}$$

Укажите определение соответствующее комплексному показателю надежности:

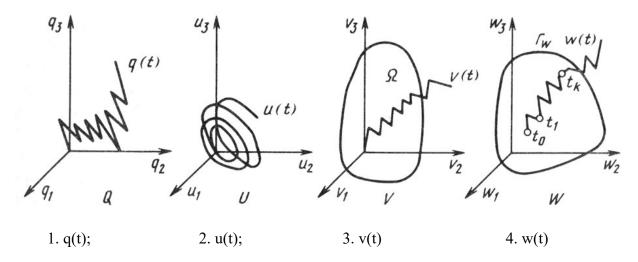

- 1. Показатель надежности, характеризующий несколько свойств, составляющих надежность объекта.
- 2. Показатель надежности, точечная или интервальная оценка которого определяется по данным испытания.
- 3. Показатель надежности, значение которого определяется расчетным методом.
- 4. Количественная характеристика одного или нескольких свойств, составляющих надежность объекта.

Указать верные соотношения позволяющие определить вероятность безотказной работы через интенсивность потока отказов:


1.
$$\lambda(t) = -\frac{d}{dt}P(t) ;$$

2.
$$\lambda(t) = \frac{d}{dt}Q(t);$$
3.
$$\frac{d}{dt}Q(t) = 1 - e^{-\int\limits_{0}^{t}\lambda(t)\cdot dt};$$
4.
$$Q(t) = 1 - P(t).$$

При каком соединении элементов объекта, вероятность его безотказной работы выше:



Указать область безотказной работы объекта в целом с учетом возможности нескольких типов отказов отдельного объекта:

где $\Gamma_1,\Gamma_2,\ \dots,\ \Gamma^{**}$ - границы областей безотказной работы при возможных отказах отдельного объекта; V_1,V_2- значения двухмерного вектора качества.

На каком из рисунков указанная траектория отражает изменение вектора качества с учетом принятых ранее обозначений:

Указать верное соотношение, позволяющее определить полный риск для объекта со случайными свойствами при воздействии случайных нагрузок:

1.
$$P(t|r,s)=P\{v(\tau|r,s)\in\Omega(r,s); \tau\in[t_0,t]\}$$

$$P(t) = \iint_{D(\mathbf{r},\mathbf{s})} P(t|\mathbf{r},\mathbf{s}) \cdot p(\mathbf{r},\mathbf{s}) \cdot d\mathbf{r} \cdot d\mathbf{s}$$
2.

$$H(t) = \iint_{D(\mathbf{r},\mathbf{s})} H(t|\mathbf{r},\mathbf{s}) \cdot p_r(r) \cdot p_s(\mathbf{s},t) \cdot dr \cdot ds$$

По отношению к какой группе отказов относится эксплуатационная надежность:

- 1. Отказы второстепенных и относительно легко восстанавливаемых элементов;
- 2. Отказы, лимитирующие ресурс объекта в целом;
- 3. Отказы, приводящие к аварии.

Отметить основные недостатки скалярных мер повреждений:

- А. Выбор крайних значений меры повреждений произволен;
- В. Невозможность описать сложные явления, сопровождающие накопление повреждений;
- С. Скалярная мера повреждений допускает интерпретацию, не связанную непосредственно с физической картиной повреждений;
- Д. Функция меры повреждения не учитывает историю предшествующего нагружения.

Какое минимально возможное число объектов необходимо для экспериментальной проверки правила линейного суммирования:

- А. Один;
- В. Два;
- С. Три;
- Д. Девять.

Что лежит в основе гипотезы автомодельности процесса накопления повреждений:

- 1. Введение независимой переменной процесса;
- 2. Введение безразмерной переменной;
- 3. Замена нескольких переменных одной переменной;
- 4. Замена одной переменной несколькими переменными.

Отметить какое из приведенных соотношений служит для определения скорости накопления повреждений:

$$\psi(t) = \int_{0}^{t} f[q(\tau)] d\tau$$
A.
$$\frac{d\psi}{dt} = f(\psi, q)$$
B.
$$\psi_{n} - \psi_{n-1} = \omega(\psi_{n-1}, q_{n}) \qquad (n=1,2,...)$$

$$\int_{0}^{T} \frac{d\tau}{T_{b}[q(\tau)]} = 1$$

Какое максимальное значение может принять скалярная мера накопления повреждений:

A. 0;

B. 0.5;

C. 1,0;

Д. 2,0.

Какое выражение относится к методу распределения надежности системы при задании одинаковой надежности всех последовательно соединенных

подсистем:

A.
$$P_{i} = (P_{s})^{1/n}$$
;
B. $P_{i}(t) = e^{-\lambda(t)t}$;
 $\gamma_{i} = \frac{\lambda_{i}}{\sum_{i=1}^{n} \lambda_{i}}$, $i = 1, 2, ..., n$
B. $T = \frac{1}{N} \cdot \sum_{i=1}^{N} t_{i}$.

Какие значения используются для оценки динамических нагрузок, действующих в машинах и оборудовании:

А.Математическое ожидание;

В.Среднеквадратическое значение;

С. Частотный спектр;

Д. Спектр мощности.

На какие виды подразделяются случайные нагрузки исходя из анализа их зависимости от аргумента:

А. Стационарные;

В. Одномерные

С. Нестационарные;

Д. Многомерные

Е. Скалярные

Какое из ниже приведенных соотношений отражает модель многоцикловой усталости при разбросе механических свойств материала и отсутствии ярко выраженного предела усталости:

$$T_{b}(s|r) = t_{c^{i}}$$

$$\int_{0}^{T} \frac{d\tau}{T_{b}[q(\tau)]} = 1$$

$$N_{b}(s|r) = N_{c} \left(\frac{r}{s}\right)^{m}$$
3.

Какая вероятностная модель является наиболее удобной для однопараметрического семейства кривых усталости:

- 1. Однопараметрическое распределение Вейбулла;
- 2. Экспоненциальное распределение;
- 3. Двухпараметрическое распределение Вейбулла;
 - 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по результатам выполнения зачета

«Зачтено»:

- ставится за работу, выполненную полностью без ошибок и недочетов.
- ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.
- ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.
- «**Не зачтено**» ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Экспертный лист

оценочных материалов для проведения промежуточной аттестации по дисциплине «Теоретические основы надежности»

по направлению подготовки/специальности

23.05.03 Подвижной состав железных дорог

шифр и наименование направления подготовки/специальности

Вагоны, Локомотивы, Электрический транспорт железных дорог

профиль / специализация

Специалист

квалификация выпускника

1. Формальное оценивание						
Показатели	Присутствуют	Отсутствуют				
Наличие обязательных структурных элеме	ентов:	-				
-титульный лист		+				
–пояснительная записка		+				
– типовые оценочные материалы		+				
-методические материалы, определяющие	процедуру и	+				
критерии оценивания						
Содержательное	оценивание					
Поморожания	Соответствует	Соответствует	Не			
Показатели		частично	соответствует			
Соответствие требованиям ФГОС ВО к	+					
результатам освоения программы						
Соответствие требованиям ОПОП ВО к	+					
результатам освоения программы	T					
Ориентация на требования к трудовым						
функциям ПС (при наличии	+					
утвержденного ПС)						
Соответствует формируемым						
компетенциям, индикаторам достижения						
компетенций						

Заключение: ФОС <u>рекомендуется</u>/ не рекомендуется к внедрению; обеспечивает/ не обеспечивает объективность и достоверность результатов при проведении оценивания результатов обучения; критерии и показатели оценивания компетенций, шкалы оценивания <u>обеспечивают</u>/ не обеспечивают проведение всесторонней оценки результатов обучения.

Эксперт, доцент кафедры материаловедения и технологии материалов Оренбургского государственного университета, канд.техн.наук, доцент

/ Тавтилов И.Ш