Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Попов Анатолий Николаевич

Должность: директор

Дата подписания: 05.03.2022 15:34:27 Уникальный программный ключ:

1e0c38dcc0aee73cee1e5c09c1d5873fc7497bc8

Приложение 9.7. ОПОП-ППССЗ по специальности 23.02.06 Техническая эксплуатация подвижного состава железных дорог

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.02 ТЕХНИЧЕСКАЯ МЕХАНИКА

основной профессиональной образовательной программы – программы подготовки специалистов среднего звена по специальности СПО 23.02.06 Техническая эксплуатация подвижного состава железных дорог

Базовая подготовка среднего профессионального образования (год приема: 2021)

n			_			
Ρ	аз	ทล	nn	TI	uи	к.
1	us	μu	-	' 1	111	и.

СОДЕРЖАНИЕ

1. Общие положения	4
2. Результаты освоения учебной дисциплины, подлежащие проверке	5
3. Оценка освоения умений и знаний (типовые задания)	6
3.1. Формы и методы оценивания	6
3.2. Типовые задания для оценки освоения учебной дисциплины	11
4. Контрольно-оценочные материалы для промежуточной аттестации по учебной	
писшиппине	43

Общие положения

В результате освоения учебной дисциплины ОП.02 Техническая механика обучающийся должен уметь, знать и освоить общие и профессиональные компетенции в соответствии с ФГОС СПО по специальности 23.02.06 Техническая эксплуатация подвижного состава железных дорог (базовый уровень подготовки):

- У1 использовать методы проверочных расчетов на прочность, действий изгиба и кручения;
 - У 2 выбирать способ передачи вращательного момента;
 - З 1 основные положения и аксиомы статики, кинематики и деталей машин.
- ОК1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2.Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3.Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OK5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
- OK8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
 - ПК 1.1. Эксплуатировать подвижной состав железных дорог.
- ПК 1.2. Производить техническое обслуживание и ремонт подвижного состава железных дорог в соответствии с требованиями технологических процессов.
 - ПК 2.3. Контролировать и оценивать качество выполняемых работ.
- ПК 3.2. Разрабатывать технологические процессы на ремонт отдельных деталей и узлов подвижного состава железных дорог в соответствии с нормативной документацией.

Формой промежуточной аттестации по учебной дисциплине является экзамен.

2. Результаты освоения учебной дисциплины, подлежащие проверке

2.1. В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих компетенций:

Таблица 1.1

Результаты обучения: умения, знания и общие компетенции	Показатели оценки результата	Форма контроля и оценивания
Уметь:		
У 1 использовать методы проверочных расчетов на прочность, действийизгиба и кручения ОК1, ОК2,ОК3,ОК4,ОК6,ОК7	использует методы проверочных расчетов на прочность, действий изгиба и кручения	экспертное наблюдение и оценка на практических и лабораторных занятиях, устный опрос, выполнение контрольной работы
У 2 выбирать способ передачи вращательного момента ОК1, ОК2, ОК3, ОК4, ОК5, ОК6, ОК7, ОК8, ОК9, ПК1.1, ПК1.2, ПК2.3, ПК3.2	умеет выбрать способ передачи вращательного момента	экспертное наблюдение и оценка на практических и лабораторных занятиях, устный опрос, выполнение контрольной работы
Знать: 3 1 основные положения и аксиомы статики, кинематики и деталей машин ОК1, ОК2, ОК3, ОК4, ОК5, ОК6, ОК7, ОК8, ОК9, ПК1.1, ПК1.2, ПК2.3, ПК3.2	знает основные положения и аксиомы статики, кинематики и деталей машин	экспертное наблюдение и оценка на практических и лабораторных занятиях, контрольная работа, оценка защиты рефератов или презентаций

3. Оценка освоения умений и знаний (типовые задания)

3.1. Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные основной профессиональной образовательной программой - подготовки специалистов среднего звена в соответствии с $\Phi \Gamma O C$.

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения аудиторных занятий.

Текущий контроль осуществляется в форме устного опроса, защиты практических работ. Промежуточный контроль выставляется на основании защиты на положительную оценку всех практических работ, выполнения внеаудиторной самостоятельной работы, полученных обучающимся в процессе работы на занятиях положительных оценок.

Промежуточная аттестация осуществляется в форме экзамена.

Элемент учебной	Формы и методы контроля									
дисциплины	Текущий конт	Рубежнь	ій контроль	Промежуточная аттестация						
	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3				
Раздел 1. Статика					<i>∂</i> φκ	V1, V2 3 1, OK 3, OK 7				
Тема 1.1. Основные понятия и аксиомы статики	Устный опрос Самостоятельная работа	3 1, ОК 1-9, ПК 1.1,1.2								
Тема 1.2. Плоская система сходящихся сил	Устный опрос Практическое занятие №1 Самостоятельная работа	3 1, OK1, OK2, OK3, K6, OK7								
Тема 1.3 Плоская система произвольно расположенных сил	Устный опрос Практическое занятие №2 Практическое занятие №3Самостоятельная работа	3 1, OK 1, OK 2, OK3, OK4, OK6, OK7, K8								
Тема 1.4. Центр тяжести	Устный опрос Лабораторное занятие № 1 Самостоятельная работа	3 1, OK1, OK2, OK3,OK6, OK7								
Раздел 2. Кинематика					дфк	Y1, Y2 3 1 OK1,OK2,OK3,OK 6,OK7				
Тема 2.1. Основные понятия кинематики, кинематика точки	Устный опрос Самостоятельная работа	3 1, OK1, OK2, OK3, OK6,OK7								
Тема 2.2. Кинематика	Устный опрос Самостоятельная работа	3 1, OK1,OK3, OK6								

тела					
Раздел 3. Динамика				дфк	<i>Y1, Y2</i> 3 <i>1</i> <i>OK 3, OK 7</i>
Тема 3.1. Основные понятия и аксиомы динамики	Устный опрос Самостоятельная работа	3 1, OK1, OK2, OK3, OK6, OK7			
Тема 3.2. Работа и мощность	Устный опрос Самостоятельная работа Административная контрольная работа	3 1, OK1, OK6,			
Раздел 4. Сопротивление материалов	1 1			Экзамен	<i>Y1, Y2</i> 3 <i>1</i> <i>OK 3, OK 7</i>
Тема 4.1. Основные понятия, гипотезы и допущения сопротивления материалов	Устный опрос Самостоятельная работа	3 1, OK1, OK6,			
Тема 4.2. Растяжение и сжатие	Устный опрос Практическое занятие № 4 Лабораторное занятие № 2 Самостоятельная работа	3 1, y1, OK1, OK2, OK3, OK6,OK7			
Тема 4.3. Срез и смятие	Устный опрос Практическое занятие № 5 Самостоятельная работа	3 1, <i>Y</i> 1, <i>OK</i> 1, <i>OK</i> 2, <i>OK</i> 3, <i>OK</i> 6, <i>OK</i> 7			
Тема 4.4. Кручение	Устный опрос Практическое занятие № 6 Лабораторное занятие № 3 Самостоятельная работа	3 1, y1, OK1,OK2,OK3, OK4,OK6, OK7			
Тема 4.5. Изгиб	Устный опрос Практическое занятие № 7 Практическое занятие № 8	3 1, <i>Y</i> 1, <i>OK</i> 1, <i>OK</i> 2, <i>OK</i> 3,			

	Самостоятельная работа Контрольная работа	ОК4,ОК6, ОК7			
Тема 4.6.	* *	31,			
Сопротивление	Устный опрос				
усталости	Самостоятельная работа	У1, ОК1, ОК4, ОК5,			
		$OK1$, $OK4$, $OK3$, $OK6$, $OK8$, $\Pi K1.1$			
		OKO, OKO, IIKI.I			
Тема 4.7. Прочность	Устный опрос	31,			
при динамических	Самостоятельная работа	У1,			
нагрузках		OK1, OK4, OK5,			
		ОК6, ОК7			
Тема 4.8. Устойчивость	Устный опрос	3 1,			
сжатых стержней	Самостоятельная работа	<i>V1</i> ,			
		OK1, OK2, OK3,			
		ОК6, ОК8, ПК1.1			
Раздел 5. Детали				Экзамен	<i>Y1, Y2,</i>
машин					31
					OK 3, OK 7
Тема 5.1. Основные	Устный опрос	3 1,			
понятия и определения	Защита рефератов и	OK1, OK4, OK5,			
	презентаций	OK6, OK7,			
	Самостоятельная работа	ОК8,ОК9			
Тема 5.2. Соединения деталей. Разъемные и	Устный опрос	3 1,			
неразъемные и	Защита рефератов и	OK1, OK2, OK3,			
соединения	презентаций	<i>OK4, OK5, OK6,</i>			
	Самостоятельная работа	ОК7, ОК8, ОК9,			
		$\Pi K1.1, \Pi K1.2,$			
		ПК2.3, ПК3.2			
Тема 5.3. Передачи	Устный опрос	31,			
вращательного	Практическое занятие №9	<i>y</i> 2,			
движения	Защита рефератов и	OK1, OK2, OK3,			
	презентаций	OK4, OK5, OK6,			
	Административная	<i>OK7, OK8, OK9,</i>			
	контрольная работа	ПК1.1, ПК1.2,			
T. 7.4 D.	Самостоятельная работа	ПК2.3, ПК3.2			
Тема 5.4. Валы и оси,	Устный опрос	3 1,			

опоры	Практическое занятие №10	У2,		
	Защита рефератов и	ОК1, ОК2, ОК3,		
	презентаций	ОК4, ОК5, ОК6,		
	Самостоятельная работа	ОК7, ОК8, ПК1.1,		
	-	ПК1.2, ПК2.3,		
		ПКЗ.2		
Тема 5.5. Муфты	Устный опрос	3 1,		
	Самостоятельная работа	У2,		
	-	OK1, OK6,		
		ПК1.1, ПК1.2,		
		ПК2.3		

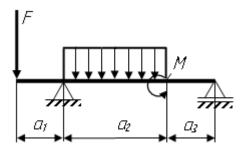
3.2. Типовые задания для оценки освоения учебной дисциплины

- 1) Практические занятия составление отчетов, выполнение заданий.
- 2) Самостоятельная работа:
 - подготовка конспекта;
 - подготовка сообщения;
 - анализ результатов практических занятий.

Результаты обучения: умения, знания и общие компетенции	Показатели оценки результата	Форма контроля и оценивания
У 1 - использовать методы проверочных расчетов на прочность, действий изгиба и кручения	Использует методы проверочных расчетов на прочность при растяжении и сжатии, при изгибе и кручении, анализирует напряженное состояние тела, делает заключение о прочностном состоянии деформированного тела	Экспертное наблюдение и оценка на практических и лабораторных занятиях, устный опрос, выполнение индивидуальных заданий (оценка по пяти бальной системе)
У 2 - выбирать способ передачи вращательного момента	Умеет выбрать способ передачи вращательного момента в зависимости от конкретных условий, с учетом эффективности использования различных видов механических передач	Экспертное наблюдение и оценка на практических и лабораторных занятиях, устный опрос, выполнение индивидуальных заданий (оценка по пяти бальной системе)
31 - основные положения и аксиомы статики, кинематики и деталей машин	Знает основные положения и аксиомы статики, кинематики и деталей машин, умеет пользоваться знаниями при решении различных конструкторских задач, производить анализ механического состояния тела, деформаций под действием различных систем сил	Экспертное наблюдение и оценка на практических и лабораторных занятиях, устный опрос, выполнение индивидуальных заданий (оценка по пяти бальной системе)

Раздел 1. Статика

Типовые задания для устного опроса:


- 1.1. Что такое материальная точка?
- 1.2. Что такое абсолютно твердое тело?
- 1.3. Что такое абсолютно жесткое тело?
- 1.4. Что такое «сила»?
- 1.5. Чем характеризуется сила как векторная величина?
- 1.6. Что такое «система сил»?
- 1.7. Что такое «линия действия силы»?
- 1.8. Что такое «внешние силы»?
- 1.9. Что такое «внутренние силы»?
- 1.10. Что такое «уравновешенная система сил»?
- 1.11. Что такое «уравновешивающая сила»?
- 1.12. Какие системы сил называются эквивалентными?

Типовые задания для самостоятельной работы

- 1.1. Как должны располагаться силы, чтобы получилась плоская система сходящихся сил?
- 1.2.Сколько уравнений равновесия необходимо составить для равновесия плоской системы сил?
- 1.3. Сколько неизвестных величин может быть при решении задач на эту тему?
- 1.4. Можно ли, построив силовой многоугольник, определить, уравновешена или нет заданная система сходящихся сил?
- 1.5. Сколько способов решения задач для плоской системы сходящихся сил существует?
- 1.6. Какие силы образуют плоскую систему сходящихся сил?
- 1.7. Что такое силовой многоугольник?
- 1.8. Как определяется равнодействующая системы?
- 1.9.Геометрическое условие равновесия плоской системы сходящихся сил.
- 1.10. Какие уравнения можно составить для уравновешенной плоской системы сходящихся сил?

Типовые задания для практических работ

Произвести расчет конструкции

Вариант	F,	q,	M,	a ₁ ,	a ₂ ,	а3, м
	кн	кн/м	кн·м	M	M	
1	6	2	4	0,6	1,5	0,4
2	5	3	5	0,2	2	0,2
3	4	4	4	0,4	3	0,4
4	2	3	2	1,5	2	1,5

5	3	4	4	1,2	3	1,4
6	4	4	5	1,5	2	1,4
7	4	6	6	1,6	2,2	1,6
8	2	3	3	1,5	1,6	1,5
9	4	3 4	6	1,3	1,4	1,3
10	3	3 5 4	3	1,5 1,3 1,2	1,6	1,5 1,3 1,2 1,3 1,2
11	6	5	5	1,3		1,3
12	8		4	1,2	2	1,2
13	6	6	5	1,3 1,2 1,2 1,1 1,2 1,1 1,5 1,4	1,6 2 2 2 2	1,4
14	7 4	3 2	4	1,1	2	1,3
15			4	1,2	2	1,5
16	2	3 4	3	1,1	2	1,4
17	2 2 2 3		3 2	1,5	2 2 2,2	1,3
18	2	3	2	1,4	2,2	1,2
19	3	4	5	1,3 1,4 0,5 0,7	2,4 2,4 2 2,2	1,2
20	4	4	4	1,4	2,4	1,4
21	6	2 4	4	0,5	2	0,2
22	7		5	0,7	2,2	0,4
23	9	5	8	0,8	1,4	0,3
24	10	8	7	1,0	0,8	0,2
25	12	9	6	1,0 1,2	0,8	1,3 1,5 1,4 1,3 1,2 1,2 1,4 0,2 0,4 0,3 0,2 0,5 0,7
26	11	10	4	0,4	1,6	0,7
27	14	4	2 4	0,4 0,7	1,8 2	0,6
28	12	6		0,8	2	1,2
29	10	7	6	1,0	2,2	0,6
30	8	8	10	1,4	1,6	0,8

Типовые вопросы для подготовки и защиты практических работ

- 1.Сколько реакций и какие дают шарнирно-подвижная и шарнирно-неподвижная опоры?
- 2.Сколько реакций и какие дает жесткая заделка (защемление)?
- 3. Какую точку на балке обычно берут за центр моментов?
- 4.Сколько независимых уравнений равновесия можно составить для плоской системы параллельных сил?
- 5. Что собой представляет консольная балка?

Раздел 2. Кинематика

Типовые задания для устного опроса:

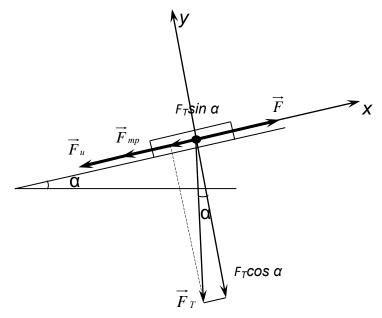
- 1. Основные понятия кинематики.
- 2. Способы задания движения точки.
- 3. Определение средней скорости точки при естественном способе задания ее движения.
- 4. Определение среднего ускорения точки при естественном способе задания ее движения.
- 5. Есть ли различие между понятиями «путь» и «расстояние»?
- 6. Как направлена скорость движения точки в любой момент времени?
- 7. Может ли быть касательное ускорение отрицательным?

- 8. Какое ускорение называется нормальным?
- 9. Как направлено касательное ускорение точки в любой момент времени?
- 10. Как направлено нормальное ускорение точки в любой момент времени?

Типовые задания для самостоятельной работы:

- 1. Выбрать закон движения твердого тела.
- 2. Указать величину скорости движения различных точек тела.
- 3. Указать величину ускорения различных точек тела.
- 4. Кинематические параметры какой точки твердого тела достаточно знать для характеристики движения тела?

Раздел 3. Динамика


Типовые задания для устного опроса:

- 1. Работа при различных видах движения.
- 2. Работа, совершаемая различными механизмами в процессе эксплуатации.
- 3. Мощность различных механизмов.
- 4. Мощность различных машин.
 - 5. Историческая справка по данному вопросу.
 - 6. Различные схемы вечного двигателя.
 - 7. Реализация различных схем вечного двигателя.

Типовые задания для самостоятельной работы:

Решение задач методом кинетостатики.

Определить движущую силу F при передвижении груза по наклонной плоскости AB = 1 вверх. Коэффициент трения f. Движение груза с ускорением a. Принять угол наклона $\alpha = 30^{\circ}$.

Вариант	$\mathbf{F}_{\mathbf{T}} \mathbf{H}$	ℓ, м	a, m/c ²	f	Вариант	$\mathbf{F}_{\mathbf{T}} \mathbf{H}$	ℓ, м	$a, m/c^2$	f
1	200	4	1,5	0,01	16	200	3	1,3	0,01
2	220	5	1,8	0,02	17	400	5	1,6	0,03
3	240	3,5	1,7	0,03	18	600	4,5	1,7	0,02
4	300	3	1,9	0,02	19	800	3	1,8	0,03
5	400	4	1,2	0,01	20	400	5	1,2	0,02
6	500	3	2,0	0,03	21	700	3,5	1,5	0,01
7	600	5	2,1	0,01	22	600	3	1,6	0,01
8	300	3,5	1,8	0,02	23	400	4,5	1,8	0,03
9	400	4,5	1,9	0,03	24	300	4	1,9	0,02
10	500	5	1,4	0,01	25	800	5	2,0	0,03
11	600	4	1,3	0,03	26	500	3,5	1,2	0,01
12	300	3,5	2,0	0,03	27	400	4,5	1,4	0,02
13	400	3	1,5	0,01	28	200	5	1,6	0,03
			•			•			

Типовые вопросы для подготовки и защиты практических работ

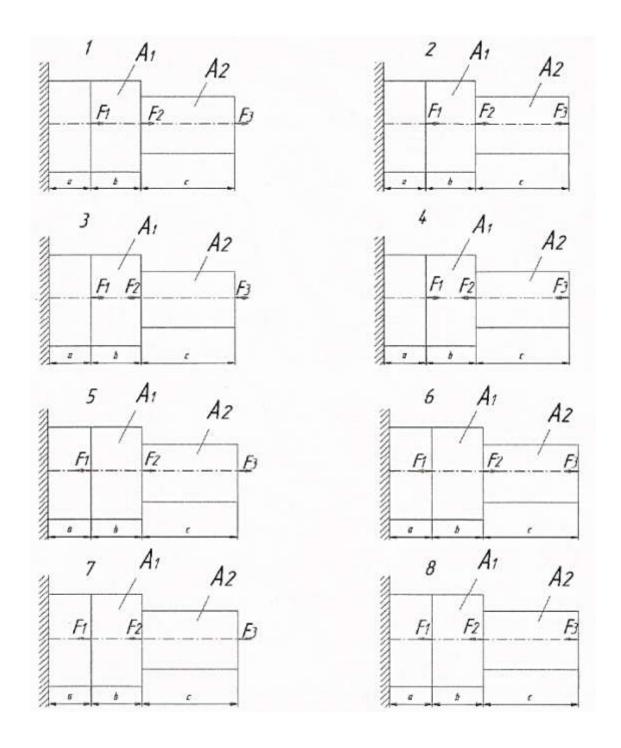
- 1. Какое ускорение называется нормальным?
- 2. Как направлено касательное ускорение точки в любой момент времени?
- 3. Как направлено нормальное ускорение точки в любой момент времени?
- 4. Как определить полное ускорение точки?
- 5. Каким параметром движения определяется величина касательного ускорения?
- 6. Каким параметром движения определяется величина нормального ускорения?

Раздел 4. Сопротивление материалов

Типовые задания для устного опроса:

- 1. Назовите основные задачи сопротивления материалов.
- 2. Сформулируйте определение «прочности тела».
- 3. Сформулируйте определение «жесткости тела».
- 4. Сформулируйте определение «устойчивости тела».
- 5. Назовите первое различие в рассмотрении состояния тела между теоретической механикой и сопротивлением материалов.
- 6. Назовите второе различие в рассмотрении состояния тела между теоретической механикой и сопротивлением материалов.
- 7. Назовите третье различие в рассмотрении состояния тела между теоретической механикой и сопротивлением материалов.
- 8. Сформулируйте определение «деформации тела».
- 9. Назовите виды деформаций.
- 10. Сформулируйте определение «упругой деформации».

Типовые задания для самостоятельной работы:


- 1. Условная диаграмма растяжения.
- 2. Предел пропорциональности.
- 3. Предел текучести.
- 4. Предел прочности.

T

5. Характеристика пластичности материала.

Типовые задания для практических работ

Проверить прочность чугунного бруса, если $\sigma_{\text{пчр}}$ =120МПа; $\sigma_{\text{пчc}}$ =400МПа, [n]=4.

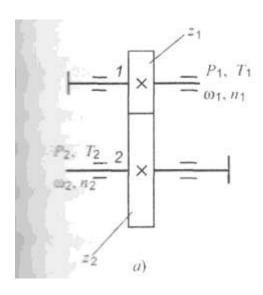
Типовые вопросы для подготовки и защиты практических работ

1. Дайте определение коэффициента запаса прочности.

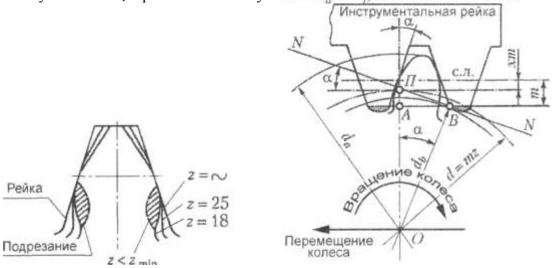
- 2. Какое напряжение считается предельным напряжением для пластичных материалов?
- 3. Какое напряжение считается предельным напряжением для хрупких материалов?
- 4. Учитывается ли коэффициент запаса прочности при расчете допускаемых напряжений?
- 5. Сколько существует видов расчета на прочность?
- 6. Какие материалы обладают большей прочностью при сжатии, чем при растяжении?

Раздел 5. Детали машин

Типовые задания для устного опроса:


- 1. Неразъемные соединения. Сварные соединения.
- 2. Неразъемные соединения. Заклепочные соединения.
- 3. Неразъемные соединения. Клеевые соединения.
- 4. Неразъемные соединения. Соединения с натягом.
- 5. Разъемные соединения. Резьбовые соединения.
- 6. Разъемные соединения. Шпоночные соединения.
- 7. Разъемные соединения. Шлицевые соединения.
- 8. Фрикционные передачи.
- 9. Ременные передачи.
- 10. Цепные передачи.
- 11. Прямозубые цилиндрические передачи.
- 12. Косозубые цилиндрические передачи

Типовые задания для самостоятельной работы:


- 1. Конструкция подшипников скольжения.
- 2. Классификация подшипников скольжения.
- 3. Применение подшипников скольжения в зависимости от условий эксплуатации и нагружения.
- 2. Общие сведения о передаче.
- 3. Конструктивные особенности передачи.
- 4. Назначение данной передачи.
- 5. Достоинства и недостатки передачи.
- 6. Область применения.
- 7. Классификация.
- 8. Сравнительная характеристика с другими видами передач.
- 9. Применение данного вида передач в узлах подвижного состава железнодорожного транспорта.

Типовые задания для практических работ

Частота вращения ведущего вала n_1 = 1500 об\мин, частота вращения ведомого вала n_2 =375 об\мин, число зубьев шестерни z_1 =23, модуль зацепления m=4мм.

При вращении зацепленных зубчатых колес окружностидиаметрами $d_{w1}u$ d_{w2} перекатываются одна по другой без скольжения и называются начальными. У отдельного колеса начальная окружность не известна до тех, пока не известны парное колесо и межосевое расстояниеа_w. Делительная окружность принадлежит отдельно взятому колесу и делит зуб на две части — головку высотой h μ ножку высотой h μ при этом высота зуба $h = h_a + h_b$ обозначается d.

Типовые вопросы для подготовки и защиты практических работ

- 1. Как классифицируются подшипники качения по направлению воспринимаемой нагрузки?
- 2. Как классифицируются подшипники качения по форме тел качения
- 3. Как классифицируются подшипники качения по основным конструктивным признакам
- 4. Что понимается под базовой динамической радиальной грузоподъемностью подшипников качения?
- 5.По какому расчетному параметру определяется пригодность выбранного подшипника качения?

Текущий контроль проводится в форме устного опроса, защиты практических занятий, ответов на контрольные вопросы, решения практических задач.

Критерии и нормы оценки знаний и умений, обучающихся за устный ответ.

Оценка "5" ставится, если студент:

- 1.Показывает глубокое и полное знание и понимание всего программного материала; полное понимание сущности рассматриваемых понятий, явлений и закономерностей, теорий, взаимосвязей.
- 2.Умеет составить полный и правильный ответ на основе изученного материала; выделять главные положения, самостоятельно подтверждать ответ конкретными примерами, фактами; самостоятельно и аргументировано делать анализ, обобщения, выводы; устанавливать меж предметные связи (на основе ранее приобретённых знаний) и внутри предметные связи, творчески применять полученные знания в незнакомой ситуации; последовательно, чётко, связно, обоснованно безошибочно излагать учебный материал. Умеет составлять ответ логической последовательности c использованием принятой терминологии; делать собственные выводы; формулировать точное определение и истолкование основных понятий, законов, теорий. Может при ответе не повторять дословно текст учебника; излагать, материал литературным языком; правильно и обстоятельно отвечать на дополнительные вопросы учителя; самостоятельно и рационально использовать наглядные пособия, справочные материалы, учебник, дополнительную литературу, первоисточники; применять систему условных обозначений при ведении записей, сопровождающих ответ; использовать для доказательства выводов из наблюдений и опытов.
- 3. Самостоятельно, уверенно и безошибочно применяет полученные знания в решении проблем на творческом уровне; допускает не более одного недочёта, который легко исправляет по требованию учителя; имеет необходимые навыки работы с приборами, чертежами, схемами, графиками, картами, сопутствующими ответу; записи, сопровождающие ответ, соответствуют требованиям.

Оценка "4" ставится, если студент:

- 1. Показывает знания всего изученного программного материала. Даёт полный и правильный ответ на основе изученных теорий; допускает незначительные ошибки и недочёты при воспроизведении изученного материала, небольшие неточности при использовании научных терминов или в выводах, обобщениях из наблюдений. Материал излагает в определённой логической последовательности, при этом допускает одну негрубую ошибку или не более двух недочётов, которые может исправить самостоятельно при требовании или небольшой помощи преподавателя; подтверждает ответ конкретными примерами; правильно отвечает на дополнительные вопросы учителя.
- 2. Умеет самостоятельно выделять главные положения в изученном материале; на основании фактов и примеров обобщать, делать выводы. Устанавливать внутри предметные связи. Может применять полученные знания на практике в видоизменённой ситуации, соблюдать основные правила культуры устной речи; использовать при ответе научные термины.
- 3. Не обладает достаточным навыком работы со справочной литературой, учебником, первоисточником (правильно ориентируется, но работает медленно).

Оценка "3" ставится, если студент:

1. Усваивает основное содержание учебного материала, но имеет пробелы, не препятствующие дальнейшему усвоению программного материала.

- 2. Излагает материал несистематизированно, фрагментарно, не всегда последовательно; показывает недостаточную сформированность отдельных знаний и умений; слабо аргументирует выводы и обобщения, допускает ошибки при их формулировке; не использует в качестве доказательства выводы и обобщения из наблюдений, опытов или допускает ошибки при их изложении; даёт нечёткие определения понятий.
- 3. Испытывает затруднения в применении знаний, необходимых для решения задач различных типов, практических заданий; при объяснении конкретных явлений на основе теорий и законов; отвечает неполно на вопросы учителя или воспроизводит содержание текста учебника, но недостаточно понимает отдельные положения, имеющие важное значение в этом тексте, допуская одну-две грубые ошибки.

Оценка "2" ставится, если ученик:

- 1. Не усваивает и не раскрывает основное содержание материала; не знает или не понимает значительную часть программного материала в пределах поставленных вопросов; не делает выводов и обобшений.
- 2. Имеет слабо сформированные и неполные знания, не умеет применять их при решении конкретных вопросов, задач, заданий по образцу.
- 3. При ответе на один вопрос допускает более двух грубых ошибок, которые не может исправить даже при помощи учителя.

Примечание. При окончанию устного ответа студента преподавателем даётся краткий анализ ответа, объявляется мотивированная оценка, возможно привлечение других студентов для анализа ответа.

<u>Критерии и нормы оценки знаний и умений обучающихся за практические и лабораторные работы</u>

Оценка «5» ставится, если студент:

- 1. Правильно и самостоятельно определяет цель данных работ; выполняет работу в полном объёме с соблюдением необходимой последовательности проведения опытов, измерений.
- 2. Самостоятельно, рационально выбирает и готовит для выполнения работ необходимое оборудование; проводит данные работы в условиях, обеспечивающих получение наиболее точных результатов.
- 3. Грамотно, логично описывает ход практических (лабораторных) работ, правильно формулирует выводы; точно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления.
- 4. Проявляет организационно-трудовые умения: поддерживает чистоту рабочего места, порядок на столе, экономно расходует материалы; соблюдает правила техники безопасности при выполнении работ.

Оценка «4» ставится, если студент:

- 1. Выполняет практическую (лабораторную) работу полностью в соответствии с требованиями при оценивании результатов на "5", но допускает в вычислениях, измерениях два три недочёта или одну негрубую ошибку и один недочёт.
- 2. При оформлении работ допускает неточности в описании хода действий; делает неполные выводы при обобщении.

Оценка «3» ставится, если студент:

- 1. Правильно выполняет работу не менее, чем на 50%, однако объём выполненной части таков, что позволяет получить верные результаты и сделать выводы по основным, принципиальным важным задачам работы.
- 2. Подбирает оборудование, материал, начинает работу с помощью преподавателя; или в ходе проведения измерений, вычислений, наблюдений допускает ошибки, неточно формулирует выводы, обобщения.
- 3. Проводит работу в нерациональных условиях, что приводит к получению результатов с большими погрешностями; или в отчёте допускает в общей сложности не более двух ошибок (в записях чисел, результатов измерений, вычислений, составлении графиков, таблиц, схем и т.д.), не имеющих для данной работы принципиального значения, но повлиявших на результат выполнения.
- 4. Допускает грубую ошибку в ходе выполнения работы: в объяснении, в оформлении, в соблюдении правил техники безопасности, которую студент исправляет по требованию преподавателя.

Оценка "2" ставится, если студент:

- 1. Не определяет самостоятельно цель работы, не может без помощи преподавателя подготовить соответствующее оборудование; выполняет работу не полностью, и объём выполненной части не позволяет сделать правильные выводы.
- 2. Допускает две и более грубые ошибки в ходе работ, которые не может исправить по требованию педагога; или производит измерения, вычисления, наблюдения неверно.

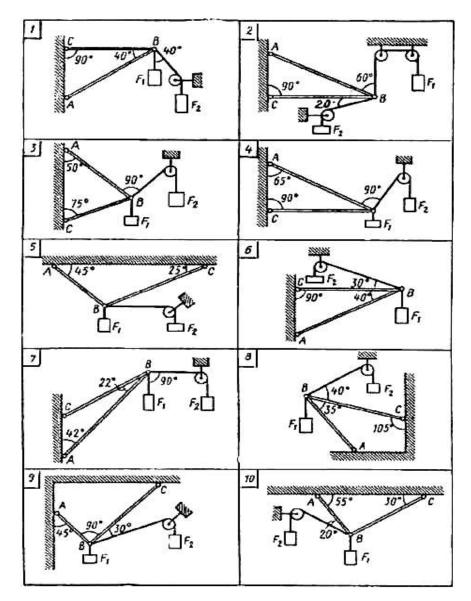
Вопросы для устного опроса и защиты практических работ

- 1. Что изучает теоретическая механика: статика, кинематика, динамика?
- 2. Что такое материя?
- 3. Что такое материальная точка, абсолютно твердое тело?
- 4. Что называется силой и каковы ее единицы?
- 5. Что называется системой сил? Какие системы называются эквивалентными?
- 6. Что называется равнодействующей и что уравновешивающей силой?
- 7. Как перенести силу по линии ее действия?
- 8. Могут ли уравновешиваться силы действия и противодействия двух тел?
- 9. Как формулируются аксиомы статики и следствия из них?
- 10. Как определяются реакции связей?
- 11. Какие разновидности связей рассматриваются в статике?
- 12. Сформулируйте правила определения направления реакций связей.
- 13. Как определяется равнодействующая системы сходящихся сил, построение силового многоугольника?
 - 14. Какая система сил называется сходящейся?
 - 15. Что называется проекцией силы на ось?
 - 16. Как определить значение и знак проекции силы на оси координат?
 - 17. В каком случае проекция силы на ось равна нулю?
- 18. Сколько и какие уравнения можно составить для уравновешенной плоской системы сходящихся сил?
 - 19. В каком случае проекция силы на ось равна модулю силы?
 - 20. Что такое пара сил? Имеет ли она равнодействующую? Что такое момент пары сил?
 - 21. Можно ли уравновесить пару сил одной силой?
 - 22. Какие пары называются эквивалентными?
 - 23. Каким образом производится сложение пар сил на плоскости?
 - 24. Как формулируется условие равновесия систем пары сил?

- 25. Что называется моментом силы относительно точки? Как определяется знак момента силы относительно точки?
 - 26. Что называется плечом силы?
 - 27. В каком случае момент силы относительно точки равен нулю?
 - 28. Что такое главный вектор и главный момент плоской системы сил?
 - 29. В каком случае главный вектор плоской системы сил является ее равнодействующей?
 - 30. Как аналитически найти главный вектор и главный момент плоской системы сил?
- 31. Какие уравнения можно составить для уравновешенной произвольной плоской системы сил?
 - 32. Какие виды нагрузок вы знаете?
 - 33. Какие виды опор балок вы знаете?
 - 34. Как рационально выбрать направления осей координат и центр моментов?
 - 35. Какие системы называют статически неопределенными?
 - 36. Что называется силой трения?
 - 37. Чем отличается трение качения от трения скольжения?
- 38. Как определяется аналитическим способом равнодействующая пространственной системы сходящихся сил?
- 39. Какие уравнения можно составить для уравновешенной пространственной системы сходящихся сил?
- 40. Как определяется момент силы относительно оси? В каком случае он равен нулю?
- 41. Напишите шесть уравнений равновесия для произвольной пространственной системы сил.
 - 42. Что такое центр тяжести параллельных сил и каково его свойство?
 - 43. Что такое центр тяжести тела?
 - 44. Изменится ли положение центра тяжести тела от поворота его на некоторый угол?
- 45. Как найти координаты центра тяжести треугольника и круга, плоского составного сечения?
 - 46. Что называется, статическим моментом площади плоской фигуры и какова его единица?
 - 47. Что изучает кинематика?
 - 48. Что такое система отсчета?
 - 49. Какой смысл имеют в кинематике понятия «покой» и «движение».
 - 50. Дайте определение основных понятий кинематики: траектория, расстояние, путь и время.
 - 51. Как формулируется закон движения точки и какими способами его можно задать?
 - 52. Что называется скоростью равномерного движения точки? Что она характеризует?
 - 53. Как определить среднюю скорость точки?
 - 54. Как направлен вектор скорости точки при криволинейном движении?
 - 55. Как определить нормальное и касательное ускорение точки?
 - 56. Как движется точка, если: а) ап=0 и аг=0; б) аг=0; ап≠0;
- в) аг $\neq 0$ и ап=0; г) ап $\neq 0$ и аг $\neq 0$.
 - 57. Имеет ли ускорение точка, равномерно движущаяся по криволинейной траектории?
 - 58. Что такое график перемещения, график скорости движения точки?
 - 59. Какое движение твердого тела называется поступательным?
- 60. Что можно сказать о траекториях, скоростях и ускорениях точек тела, совершающего поступательное движение?
- 61. Дайте определение вращательного движения тела вокруг неподвижной оси. Что называется угловым перемещением тела?
 - 62. Что называется угловой скоростью?
 - 63. Какая связь между частотой вращения тела и угловой скоростью вращения?
- 64. Какое вращательное движение называется равномерным, а какое равнопеременным?
- 65. Каковы зависимости между величинами (φ , ω , ϵ), характеризующими вращательное движение тела, и линейными величинами (φ , φ , an, ar, a),

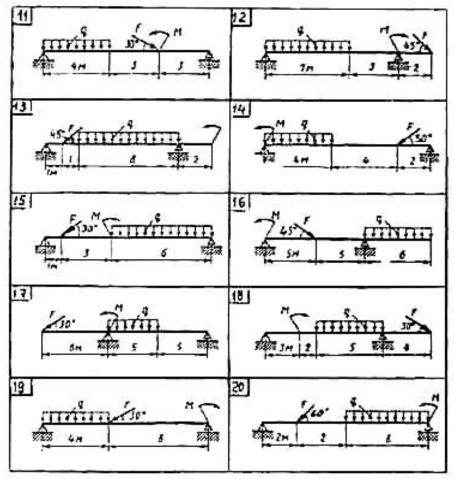
характеризующими движение какой-либо точки этого тела?

- 66. Какое движение твердого тела называется плоскопараллельным?
- 67. Может ли у какой-либо точки тела, находящегося в плоскопараллельном движении, абсолютная скорость равняться нулю?
 - 68. Сформулируйте две первые аксиомы динамики, две основные задачи динамики.
 - 69. Как формулируются третья и четвертая аксиомы динамики?
 - 70. Дайте определение силы инерции. Как она направлена? К чему приложена?
 - 71. В чем заключается принцип Даламбера?
 - 72. Как определяется работа постоянной силы на прямолинейном пути.
 - 73. Что называется мощностью и каковы ее единицы?
 - 74. Если на тело действуют несколько сил, то каким образом можно найти их общую работу?
 - 75. Чему равна работа силы тяжести? Зависит ли она от вида траектории?
 - 76. Что называется вращающим моментом, механическим КПД?
- 77. Как выражается зависимость между вращающим моментом, и угловой скоростью при заланной мошности?
 - 78. Что называется импульсом силы и количеством движения материальной точки?
 - 79. Сформулируйте закон количества движения.
 - 80. Что такое кинетическая энергия точки?
 - 81. Каковы основные задачи раздела «Сопротивление материалов»?
 - 82. Что такое деформация?
 - 83. Какие деформации называют упругими и какие пластичными?
 - 84. Какие деформации недопустимы при нормальной работе конструкции?
 - 85. Что называется прочностью, жесткостью и устойчивостью детали или конструкции?
 - 86. В чем сущность расчетов на прочность и жесткость?
 - 87. В чем сущность метода сечения?
- 88. Можно ли установить закон распределения внутренних сил по проведенному сечению методами статики?
- 89. В каком деформированном состоянии находится брус, если в его поперечном сечении действует крутящий Мк и изгибающий Ми моменты?
 - 90. Сколько внутренних факторов может возникнуть в поперечном сечении бруса?
 - 91. Что называется напряжением в данной точке сечения?
 - 92. Каковы единицы напряжения?
- 93. Можно ли говорить о напряжении в данной точке, не указывая площадки (сечения), на которой это напряжение возникает?
 - 94. В каком случае прямые брусья называют стержнями?
 - 95. Как нагрузить прямой стержень, чтобы он испытывал только растяжение?
 - 96. Что называется эпюрой продольных сил брусьев?
 - 97. Как строится эпюра продольных сил?
 - 98. Как определить нормальное напряжение в поперечном сечении бруса?
 - 99. Что называется эпюрой нормальных напряжений?
 - 100. Какие поперечные сечения бруса называют опасными?
 - 101. Что такое модуль продольной упругости и какова его размерность?
 - 102. Какая величина в формуле Гука характеризует жесткость материала?
 - 103. Зависит ли нормальное напряжение от материала бруса и формы поперечного сечения?
 - 104. Зависит ли удлинение бруса от его материала?
 - 105. Какова цель механических испытаний материалов?
- 106. Какой вид имеет диаграмма растяжения образца из низкоуглеродистой стали и серого чугуна?
- 107. Что называется, пределами пропорциональности текучести и прочности на условной диаграмме растяжения образца из низкоуглеродистой стали?
- 108.До какого предельного напряжения, являющегося характеристикой пластичного материала, можно нагружать образец, не опасаясь появления пластической деформации?
 - 109. Что такое фактический коэффициент запаса прочности?

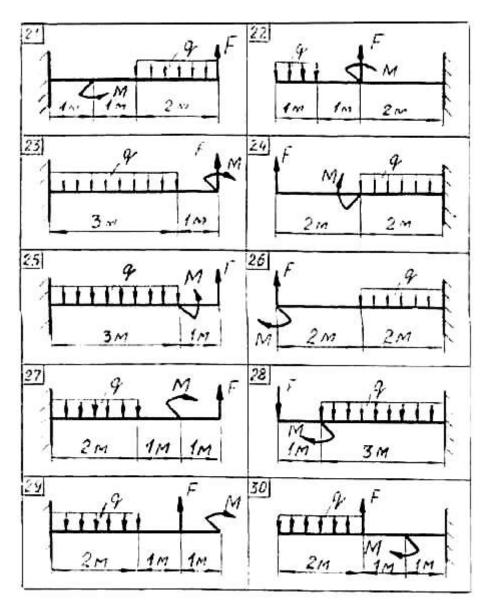

- 110. Какие факторы влияют на выбор требуемого коэффициента прочности?
- 111. Что такое допускаемое напряжение?
- 112. Какие расчеты можно выполнить из условия прочности?
- 113. Какова зависимость между допускаемыми напряжениями растяжения, среза и смятия?
 - 114.По каким формулам производят расчет на срез и смятие?
- 115.По какому сечению (продольному или поперечному) проверяют на срез призматические шпонки?
 - 116.На каких допущениях основаны расчеты на смятие?
 - 117. Как определяется площадь смятия, если поверхность смятия цилиндрическая, плоская?
 - 118. Что такое чистый сдвиг?
 - 119. Какой величиной характеризуется деформация сдвига?
- 120. Какая зависимость существует между передаваемой валом мощностью, вращающим моментом и угловой скоростью?
 - 121. Как определяется крутящий момент в продольном сечении?
- 122. Каков закон распределения касательных напряжений по площади поперечного сечения при кручении?
 - 123. Какая разница между крутящим и вращающим моментами?
 - 124. Что является геометрическими характеристиками сечения вала при кручении?
- 125. Какая существует зависимость между величинами E, G и μ , характеризующими упругие свойства материалов?
 - 126.По какой формуле определяется деформация при кручении?
- 127. Что такое полярный момент инерции сечения бруса? По какой формуле определяется полярный момент инерции круга?
 - 128. Что такое полярный момент сопротивления? Как он определяется для кольца?
- 129.Запишите формулу для расчета на прочность цилиндрической пружины при осевом нагружении.
- 130. Каковы геометрические характеристики сечений при деформации среза, кручения и изгиба?
 - 131. Что такое статический момент сечения?
 - 132. Чему равен статический момент сечения относительно центральной оси?
 - 133. Что такое центробежный момент инерции?
 - 134. Каковы единицы осевого момента инерции?
- 135. Какова связь между моментами инерции относительно параллельных осей, из которых одна является центральной?
 - 136. Какова зависимость между осевыми и полярными моментами инерции данного сечения?
 - 137. Какие оси, проведенные в плоскости сечения, называют главными?
 - 138. Как определяют осевые моменты инерции сложных сечений?
- 139. Какие внутренние силовые факторы возникают в поперечных сечениях бруса при его прямом поперечном изгибе?
- 140.Как следует нагрузить брус, чтобы получить: а) чистый прямой изгиб; б) поперечный прямой изгиб?
- 141. Что называется поперечной силой в поперечном сечении бруса и чему она численно равна?
 - 142. Что такое эпюра поперечных сил и как она строится?
- 143. Что называется изгибающим моментом в поперечном сечении бруса и чему он численно равен?
 - 144.Сформулируйте правило знаков для поперечных сил и изгибающих моментов.
- 145. Какими дифференциальными зависимостями связаны между собой изгибающий момент, поперечная сила, интенсивность равномерно распределенной нагрузки?
 - 146.На каких допущениях основаны выводы расчетных формул при изгибе?
 - 147. Каков характер деформаций, возникающих при изгибе?
 - 148.В чем сущность гипотез и допущений при изгибе?

- 149. Как меняются нормальные напряжения при изгибе по высоте сечения бруса?
- 150. Что такое жесткость сечения при изгибе?
- 151. Как определить напряжения в поперечном сечении при прямом изгибе?
- 152. Что такое осевой момент сопротивления и каковы его единицы?
- 153. Какие виды расчетов можно производить из условия прочности при изгибе?
- 154. Какие формы поперечных сечений рациональны для балок из пластинчатых материалов?
- 155. Каковы задачи раздела «Детали машин»?
- 156. Что называется машиной?
- 157. Какие признаки характеризуют машину?
- 158. Какая разница между машиной и механизмом?
- 159. Что следует понимать под деталью и сборочной единицей?
- 160. Каковы современные тенденции развития машиностроения?
- 161. Какие требования предъявляются к машинам?
- 162. Каковы достоинства и недостатки сварных соединений по сравнению с клеевыми?
- 163. Какие применяют типы сварных швов?
- 164. Какие соединения называются резьбовыми?
- 165. Как классифицируются резьбы по геометрической форме и по назначению?
- 166. Какие резьбы называются метрическими?
- 167. Каковы достоинства болтового соединения?
- 168.В каких случаях применяют шпильки?
- 169. Почему для винтов, шпилек и болтов применяют треугольную резьбу?
- 170. Какие материалы применяют для изготовления резьбовых деталей.
- 171. Как классифицируют механические передачи по принципу действия?
- 172. Каково назначение механических передач?
- 173.Почему вращательное движение наиболее распространено в механизмах и машинах?
 - 174. Для чего применяют промежуточную передачу между двигателем и рабочей машиной?
 - 175.По каким формулам определяют кинематические и силовые соотношения в передачах?
 - 176. Как определяется передаточное отношение?
 - 177. Какие виды фрикционных передач вы знаете?
- 178.В каких случаях применяют фрикционные передачи? Каковы их достоинства и недостатки?
- 179. Какие материалы применяют для изготовления рабочей поверхности фрикционных катков?
 - 180. Каковы достоинства и недостатки зубчатых передач?
 - 181.По каким признакам классифицируют эти передачи?
 - 182.В каких случаях применяют открытые зубчатые передачи?
 - 183. Какие передачи называют закрытыми?
 - 184. Какие требования предъявляют к профилям зубьев?
 - 185. Почему эвольвентное зацепление имеет преимущественное применение?
 - 186. Какие вы знаете основные параметры зубчатой пары?
 - 187. Почему линия зацепления называется линией давления?
 - 188. Что такое модуль и шаг зубчатого зацепления?
 - 189. Какая окружность зубчатого колеса называется делительной?
 - 190. Какие материалы целесообразно применять для изготовления зубчатых передач?
 - 191. Каковы достоинства и недостатки косозубой передачи по сравнению с прямозубой?
 - 192. Что называется нормальным и торцовым модулями и какова зависимость между ними?
 - 193. Каково назначение конических зубчатых передач?
 - 194. Каковы недостатки конической зубчатой передачи по сравнению с цилиндрической?
 - 195. Как определяется КПД зубчатого редуктора?
 - 196. Как определить силы в зацеплении конической передачи?
- 197. Какими достоинствами и недостатками обладают червячные передачи по сравнению с зубчатыми?

- 198. Какой элемент червячной передачи является ведущим?
- 199.В каких случаях применяют червячные передачи?
- 200.Из каких материалов изготавливают червяк и червячное колесо?
- 201. Как выбирают число заходов червяка?
- 202. Как определить передаточное число червячной пары?
- 203. Какая передача называется ременной?
- 204. Какие применяют типы ремней?
- 205. Какими достоинствами и недостатками обладают ременные передачи по сравнению с другими видами передач?
 - 206. Каковы достоинства и недостатки цепных передач?
 - 207. Какие различают виды приводных цепей?
 - 208. Какая разница между валом и осью?
 - 209. Какие различают виды осей и валов?
 - 210. Что называется шипом, шейкой и пятой?
 - 211. Какие материалы применяют для изготовления валов и осей?
 - 212. Что называется подшипником?
 - 213. Какие различают типы подшипников скольжения?
 - 214. Какими достоинствами и недостатками обладают подшипники скольжения?
 - 215.Из каких деталей состоят подшипники качения?
 - 216. Для чего применяется сепаратор?
 - 217. Какие различают типы подшипников качения?
- 218. Каковы достоинства и недостатки подшипников качения по сравнению с подшипниками скольжения?
 - 219.Из каких материалов изготавливают подшипники качения?
 - 220. Какие виды разрушения характерны для подшипников качения?
 - 221. Какие факторы влияют на работоспособность подшипников качения?
 - 222. Как подбирают подшипники по ГОСТу?
 - 223. Для чего применяется смазка в подшипниках качения и как она осуществляется?


Индивидуальные задания

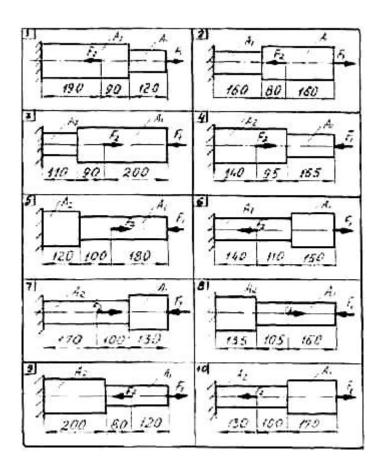
Практическая работа №1 Определить реакции стержней, удерживающих грузы F_1 и F_2 . Массой стержней пренебречь


№ задачи	$\mathbf{F_1}$	\mathbf{F}_2
и № схемы	кН	кН
1	0,4	0,5
2	0,6	0,4
3	0,5	0,8
4	0,4	0,2
5	0,8	1,0
6	0,3	0,8
7	0,2	0,5
8	0,8	0,4
9	1,2	0,8
10	0,9	0,6

Определить реакции опор двухопорнойбалки

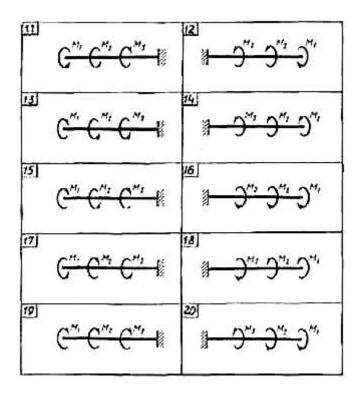
№ задачи	F	q	M
	кН	кН/м	кНм
11	20	6	40
12	20	4	20
13	10	5	25
14	40	6	30
15	20	7	10
16	10	4	30
17	30	6	40
18	10	5	25
19	15	5	35
20	10	8	20

Для заданной консольной балки определить реакции заделки.

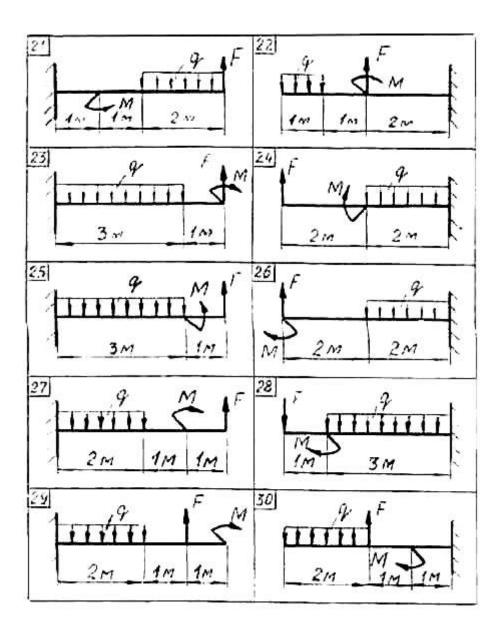


№ задачи	F	q	M
	кН	кН/м	кН∙м
21	20	5	40
22	46	6	30
23	40	10	10
24	25	10	20
25	20	8	15
26	22	8	20
27	30	12	40
28	20	10	45
29	35	15	15
30	34	8	25

Для заданного бруса построить эпюры продольных сил и нормальных напряжений в поперечном сечении бруса, проверить прочность бруса на каждом участке, приняв $[\sigma]_{\rho}$ =160MПа


 $[\sigma]_c$ =120 МПа а также определить удлинение (укорочение) бруса, если модуль продольной упругости E=2 $\cdot 10^5$ МПа. Вес бруса не учитывать.

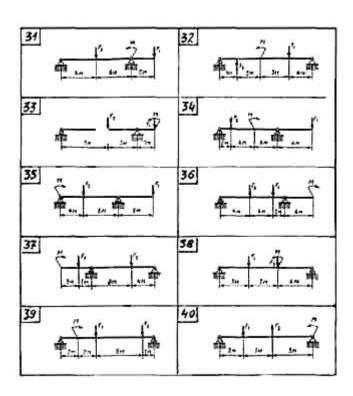
№ задачи	F1	F2	A1	A2
0.12 300,00 111	кН	кН	СМ	СМ
1	12	30	0,8	1,5
2	22	4	1,4	1,2
3	20	3	1,65	1,4
4	11	29	0,9	1,2
5	19	43	1,55	1,9
6	26	46	2,2	1,7
7	23	4	2,2	1,9
8	15	35	1,3	1,5
9	19	36	1,4	1,7
10	35	10	2,4	2,1


Для заданного вала круглого поперечного сечения построить эпюру крутящихся моментов и определить диаметр, обеспечивающий его прочность и жесткость, если [τ]=70 МПа, [ϕ 0] = 0,02 рад/м, G=8 · 10^4 МПа .

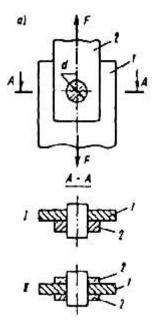
№ задачи	M1	M2	M3
т зада п	кН∙м	кН∙м	кН∙м
11	0,9	1,5	1,5
12	2,5	1,3	0,8
13	1,1	0,7	3,2
14	0,8	1,4	0,7
15	4,2	2,0	1,2
16	1,3	1,3	0,7
17	4,5	1,4	0,9
18	1,2	0,9	4,9
19	1,9	2,0	0,6
20	3,0	1,0	1,9

Практическая работа $\mathfrak{N}\mathfrak{D}5$

Для заданной консольной балки построить эпюры поперечных сил и изгибающих моментов. Подобрать сечение балки в виде двутавра, если $[\sigma] = 160 \ \mathrm{MHa}$.



№ задачи	F	q	M
ут зада п	кН	кН/м	кН∙м
21	20	5	40
22	46	6	30
23	40	10	10
24	25	10	20
25	20	8	15


26	22	8	20
27	30	12	40
28	20	10	45
29	35	15	15
30	34	8	25

Для двухопорной балки построить эпюры поперечных сил и изгибающих моментов. Подобрать сечение балки, составленное из двух швеллеров, если $[\sigma] = 160 \text{ M}\Pi a$

№ задачи	F_1	F_2	M
у зада п	кН	кН	кН∙м
31	25	20	15
32	40	25	20
33	30	50	20
34	15	45	30
35	50	60	10
36	65	10	35
37	40	50	30
38	55	15	25
39	60	20	15
40	55	20	15

Шарнирное соединение деталей 1 и 2 (рис. 21а) с помощью пальца диаметром d решено заменить на сварное соединение (рис. 216) фланговыми швами с катетом к. Определить длину l_{ϕ} каждого сварного шва. Для материала пальца (сталь 45) принять $[\tau] = 80 H/мм^2$, для материала сварного шва $[\tau]'_{cp}=100~HI~мм^2$. Указание: необходимую для расчета швов силу F найти из условия прочности пальца при срезе.

№ задачи	Тиг	т сечения	d	l_{Φ}	k
	a	б	MM		
1	I	I	31	-	5
2	I	II	35	-	7
3	II	I	39	-	9
4	II	II	27	_	5
5	I	I	23	-	7
6	I	II	-	85	9
7	II	I	-	95	5
8	II	II	-	10	7
9	II	I	-	11	9
10	I	II	-	12	5

Сварное соединение деталей 1 и 2 фланговыми швами с катетом к и длиной l_{ϕ} каждый решено заменить на шарнирное соединение (рис. 21 а) с помощью пальца диаметром d. Определить диаметр пальца d из условия прочности при срезе. Для материала сварного шва принять $[\tau]'_{cp}$ =100H/ mm^2 , для материала пальца (сталь 45) $[\tau]_{cp}$ =80H/ mm^2 . Указание: необходимую для расчета пальца силу F найти из условия прочности швов при срезе.

№ задачи	Тиг	т сечения	d	l_{Φ}	k
	a	б	MM		
1	I	I	31	-	5
2	I	II	35	-	7
3	II	I	39	-	9
4	II	II	27	-	5
5	I	I	23	-	7
6	I	II	-	85	9
7	II	I	-	95	5
8	II	II	-	10	7
9	II	I	-	11	9
10	I	II	-	12	5

Рассчитать и спроектировать отрытую клиноремённую передачу общего назначения, предназначенную для длительной эксплуатации в нормальных условиях в 2 смены при легко-ударной нагрузке .

№	P	n	u	№	P	n	u	No	P	n	u
задачи	кВт	об/мин		задачи	кВт	об/мин		задачи	кВт	об/мин	
1	3	1435	3,15	11	5	1435	4	21	3	1500	3,15
2	2,2	950	4	12	2	850	3,15	22	2,2	1000	4
3	4	1430	2,5	13	3	1450	3	23	4	1430	2,5
4	1,5	935	5	14	1	935	4	24	1,5	2000	5
5	4	950	3,15	15	5	900	3,15	25	4	850	3,15
6	5,5	1445	4	16	5,5	1005	5	26	5,5	1200	4
7	4	1430	2,5	17	4	1530	2	27	4	1300	2,5
8	3	1455	1,3	18	6	1460	4	28	5	1600	2
9	4	950	2,2	19	4	1050	3	29	4	950	2,2
10	5,5	950	1,8	20	5,5	1000	1,5	30	5,5	950	1,6

Рассчитать и спроектировать отрытую передачу втулочной цепью общего назначения, предназначенную для длительной эксплуатации в нормальных условиях в 2 смены при легко-ударной нагрузке .

№	P	n	u	№	P	n	u	№	P	n	u
задачи	кВт	об/мин		задачи	кВт	об/мин		задачи	кВт	об/мин	
1	3	1435	3,15	11	5	1435	4	21	3	1500	3,15
2	2,2	950	4	12	2	850	3,15	22	2,2	1000	4
3	4	1430	2,5	13	3	1450	3	23	4	1430	2,5
4	1,5	935	5	14	1	935	4	24	1,5	2000	5
5	4	950	3,15	15	5	900	3,15	25	4	850	3,15
6	5,5	1445	4	16	5,5	1005	5	26	5,5	1200	4
7	4	1430	2,5	17	4	1530	2	27	4	1300	2,5
8	3	1455	1,3	18	6	1460	4	28	5	1600	2
9	4	950	2,2	19	4	1050	3	29	4	950	2,2
10	5,5	950	1,8	20	5,5	1000	1,5	30	5,5	950	1,6

Рассчитать и спроектировать закрытую цилиндрическую косозубую передачу общего назначения, предназначенную для длительной эксплуатации в нормальных условиях в 2 смены при легко-ударной нагрузке.

No	P	n	u	№	P	n	u	No	P	n	u
задачи	кВт	об/мин		задачи	кВт	об/мин		задачи	кВт	об/мин	
1	3	1435	3,15	11	5	1435	4	21	3	1500	3,15
2	2,2	950	4	12	2	850	3,15	22	2,2	1000	4
3	4	1430	2,5	13	3	1450	3	23	4	1430	2,5
4	1,5	935	5	14	1	935	4	24	1,5	2000	5
5	4	950	3,15	15	5	900	3,15	25	4	850	3,15
6	5,5	1445	4	16	5,5	1005	5	26	5,5	1200	4
7	4	1430	2,5	17	4	1530	2	27	4	1300	2,5
8	3	1455	1,3	18	6	1460	4	28	5	1600	2
9	4	950	2,2	19	4	1050	3	29	4	950	2,2
10	5,5	950	1,8	20	5,5	1000	1,5	30	5,5	950	1,6

Практическая работа N = 9

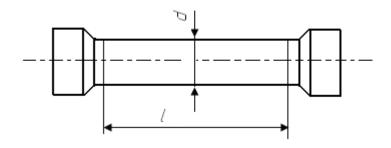
Выполнить эскизную компановку закрытой цилиндрической косозубой передачи.

Практическая работа $\mathfrak{N}_{2}10$

Для вала редуктора подобрать подшипники качения. Нагрузка нереверсивная, спокойная. Рабочая температура подшипникового узла не должна превышать 65° . Ресурс подшипника $L_n=12\cdot 10^3$

	Номера задач										
Исходные данные	1	2	3	4	5	6	7	8	9	0	
1. Величина осевой нагрузки											
Fa, H	25 124	41	620	42	98 56	01 380	83	95	51	07	
2. Реакция опор $R_{ m AY}$	691 1105	1 1284	356 4508	-15	802 1154	844 1376	194 1233	18 1207	148 652	50	

R_{BY}		1750	5599	74			1640	1598	1802	1389
$R_{\mathrm{AX}}^{=}R_{\mathrm{BX}}$				797						
3. Диаметр вала в месте по-										
садки подшипников, d, мм	5	0	5	0	0	5	0	0	0	5
4. Угловая скорость вала, ω,										
рад/с	0	8		6	6	0	5,8	3,9	1,52	4,7

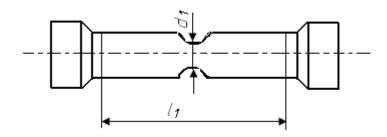

ЛАБОРАТОРНАЯ РАБОТА 1

- 1. Тема: Испытание материалов на растяжение.
- 2. Цель работы: Изучить поведение материала при растяжении до разрушения, получить диаграмму растяжения и установить основные механические характеристики материала образца.
- 3. Оборудование и приборы:

испытательная машина (цена деления шкалы - 10кг.)

штангенциркуль (цена деления шкалы 0,1 мм)

4. Эскиз и размеры образца до испытания:


Диаметр d = 10 мм.

Расчетная 1 = 100 мм.

Начальная площадь поперечного сечения

$$A = (\pi * d^2) / 4 [MM^2] A = 3,14*10^2 / 4 = 78,5 MM^2$$

5. Вид и размеры образца после разрушения:

Диаметр шейки $d_1 = 6,3$ мм

Длина расчетного участка после разрыва $l_1 = 106,7$ мм

Площадь поперечного сечения образца в месте разрыва

$$A_1 = (\pi *d^2) / 4 [mm^2]$$
 $A_1 = 3,14*6,3^2 / 4 = 49,4 mm^2$

6. Диаграмма растяжения (с указанием характерных точек)

Масштаб диаграммы: удлинения 1см = 0,1мм

нагрузки
$$1 \text{ cm} = 5 \text{ кH}$$

Нагрузка, соответствующая пределу $F_{\rm T} = 25000~{\rm H}$

Наибольшая нагрузка, предшествующая разрушению F=37300 H

7. Результаты испытания:

Предел текучести: σ_T =FT/A [МПа] σ_T =25000/78,5=318,47МПа

Предел прочности $\sigma_{\text{пу}}$ = F_{m}/A [МПа] $\sigma_{\text{пу}}$ =37300/78,5=475,15МПа

Остаточное удлинение δ =(11-1)/1*100% δ =(106,7-100)/100*100=6,7 %

Остаточное сужение ψ =(A-A₁)/A*100% ψ =(78,5-49,4)/78,5*100=37,07 %

ЛАБОРАТОРНАЯ РАБОТА 2

Тема: Испытание пластичных и хрупких материалов на сжатие.

Цель работы: Ознакомиться с методом испытания материалов на сжатие, определить механические характеристики пластичных и хрупких материалов при сжатии.

Оборудование и приборы:

Испытательная машина (цена деления шкалы 10кг)

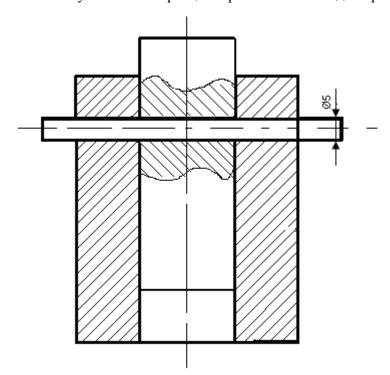
Штангенциркуль (цена деления - 0,1 мм)

Эскиз образцов, характер их деформации и разрушения.

Материал	до испытания	после испытания
Чугун	- {}-	-
Сталь	- {-}	

Размеры образцов и	Материал	иал
результаты испытаний	Чугун	Сталь
Размеры поперечного сечения образца	$d=20[exttt{mm}]$	D = 20 [MM]
Площадь поперечного сечения $A=\pi d^2 \backslash 4 \; [mm^2]$	A= 314*20 4 = 314 MM	A= 314*20 4 = 314 MM
Нагрузка, соответствующая пределу прочности	$F_{\rm max}=\!64500 H$	$F_{\rm max} = 150000 \rm H$
Π редел прочности $\sigma_{ m n_{ m q}} = F_{ m max} \langle A \ [{ m MIIa}]$	О _{пч} = <u>64500</u> = 205,4 МПа	О _{ћч} = <u>150000</u> = 477,71 МПа 314

ЛАБОРАТОРНАЯ РАБОТА 3


- 1. Тема: Определение модуля сдвига при кручении стержня круглого сечения
- 2. Цель работы: Ознакомиться с методикой проведения испытаний и определения
- . модуля сдвига при кручении
- 3. Оборудование и приборы:

испытательная машина (цена деления шкалы - 10кг)

штангенциркуль (цена деления шкалы - 0,1мм)

приспособление для среза

4. Эскиз установки образца в приспособлении для среза

5. Данные об образце.

Материал Cm3

Диаметр d = 5мм

Площадь поперечного сечения

$$A_{cp} \!\!=\!\! 2\pi d^2 \! / 4 \; [\text{mm}] \qquad \qquad A_{cp} \!\!=\!\! 2^* 3,\! 14^* 5^2 \! / 4 \!\!=\!\! 39,\! 25 \; \text{mm}$$

6. Результаты испытаний

Разрушающая нагрузка Q = 1.5 M = 1500 kгc*9.81 = 14715 H

Предел прочности на срез τ_{cp} =Q/A_{cp} [МПа] τ_{cp} =14715/39,25=174,714 МПа

7. Сравнение предела прочности на срез и предела прочности на растяжение для одного и того же материала.

Эскиз образца после испытания

4. Контрольно-оценочные материалы для промежуточной аттестации по учебной дисциплине

Предметом оценки являются умения и знания. Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, а также выполнения обучающимися практических и контрольных работ. Промежуточная аттестация в форме экзамена: выполнены на положительную оценку все практические и контрольные работы.

І. ПАСПОРТ

Назначение:

ФОС предназначен для контроля и оценки результатов освоения учебной дисциплины Техническая механика специальности 23.02.06 Техническая эксплуатация подвижного состава железных дорог.

Умения

У1 использовать методы проверочных расчетов на прочность, действий изгиба и кручения;

У2 выбирать способ передачи вращательного момента.

Знания

3 1 основные положения и аксиомы статики, кинематики, динамики, сопротивления материалов и деталей машин

ІІ. ЗАДАНИЕ ДЛЯ ЭКЗАМЕНУЮЩЕГОСЯ.

Инструкция для обучающихся

Внимательно прочитайте задание, ответьте на вопросы, правильные ответы проставьте на экране знаком «+». В каждом вопросе всего один правильный ответ.

Время выполнения задания – 30 мин

Экзаменационные тестовые вопросы по дисциплине «Техническая механика» для студентов 2-го курса специальности 23.02.06 Техническая эксплуатация подвижного состава железных дорог

Часть А

Раздел 1 (2 вопроса)

- 1. Раздел статика изучает ...
- 2. Систему сходящихся сил образуют...
- 3. Равнодействующая сила эквивалентна...
- 4. Проекция силы на ось определяется...
- 5. Момент силы относительно точки определяется...
- 6. Виды движения точки зависят...
- 7. Кинематические графики показывают...
- 8. Поступательное движение твердого тела определяется...
- 9. Понятия прочности определяет...
- 10. Понятие жесткости определяет...
- 11. Понятие устойчивости определяет...

Раздел 2 (2 вопроса)

- 12. Растяжение определяет...
- 13. Сжатие определяет...
- 14. Условие прочности при растяжении и сжатии определяет...
- 15. Срез определяет...
- 16. Смятие определяет...
- 17. Условие прочности при срезе и смятии определяет...
- 18. Кручение определяет...
- 19. Условие прочности при кручении определяет...
- 20. Изгиб определяет...
- 21. Условие прочности при изгибе определяет...
- 22. Устойчивость определяет...

Раздел 3 (2 вопроса)

- 23. Раздел детали машин изучает...
- 24. Сварные соединения относятся к...
- 25. Типы сварных швов и их расчет.
- 26. К основным параметрам резьбы оносятся...
- 27. Шпоночные соединения применяются...
- 28. Шлицевые соединения применяются...

- 29. Передачами называются...
- 30. Фрикционные передачи состоят из...
- 31. Ременные передачи состоят из...
- 32. Цепные передачи состоят из...
- 33. Зубчатые передачи состоят из...
- 34. Коническая зубчатая передача.
- 35. Червячные передачи состоят из...
- 36. Передачи винт гайка состоит из...
- 37. Валы применяются для...
- 38. Оси применяются для...
- 39. Подшипники скольжения. применяются для...
- 40. Подшипники качения применяются для...
- 41. Подшипниковые узлы состоят из...
- 42. Смазка нужна для...
- 43. Смазочные устройства состоят из...
- 44. Муфты применяются для...
- 45. Рычажные механизмы состоят из...
- 46. Механизмы возвратно поступательного движения состоят из...

Часть В

Раздел 1 (2 вопроса)

- 1. Тело называется абсолютно твердым, если...
- 2. Эквивалентную систему сил образуют...
- 3. Геометрическое условие равновесия плоской сходящейся системы сил...
- 4. Парой сил называется...
- 5. Центром тяжести называется...
- 6. Равнопеременным движением точки называется...
- 7. Вращательным движение твердого тела называется...
- 8. Уравновешенной системой сил называется...
- 9. Моментом силы относительно оси называется...
- 10. Параллелепипедом сил называется...
- 11. Плоскопараллельным движением твердого тела называется...

Раздел 2 (2 вопроса)

- 12. Стержнем называется...
- 13. Брусом называется...
- 14. Оболочкой называется...
- 15. Массивом называется...
- 16. Внутренними силовыми факторами при растяжении и сжатии являются...
- 17. Условие жесткости при растяжении и сжатии ...
- 18. Условие жесткости при кручении ...
- 19. Условие жесткости при изгибе ...
- 20. Критической силой называется...
- 21. Предельными напряжениями называется...
- 22. Допускаемыми напряжениями называется...
- 23. Допустимой перегрузкой стержня является...
- 24. Критическим напряжением называется...
- 25. Гибкостью стержня называется...
- 26. Формула Эйлера...
- 27. Формула Ясинского...

- 28. Внутренними силовыми факторами при кручении являются...
- 29. Внутренними силовыми факторами при изгибе являются...

Раздел 3 (2 вопроса)

- 30. Расчет неразъемных соединений производится...
- 31. Резьбовые соединения и детали включают...
- 32. Расчет резьбовых соединений производится...
- 33. Расчет шпоночных соединений производится...
- 34. Шлицевые соединения включают...
- 35. Кинематический и силовой расчеты приводов машин производится...
- 36. Фрикционные передачи включают...
- 37. Ременные передачи включают...
- 38. Цепные передачи включают...
- 39. Зубчатые передачи включают...
- 40. Геометрия зацепления зубчатых передач.
- 41. Конструкция зубчатых колес включает...
- 42. Конические зубчатые передачи включают...
- 43. Червячные передачи включают...
- 44. Конструктивные, технологические и эксплуатационные особенности червячных передач включают...
 - 45. Передачи винт гайка включают...
 - 46. Валы и оси применяются для...
 - 47. Предварительный расчет валов и осей производится...
 - 48. Подшипники скольжения включают...
 - 49. Подшипники качения включают...
 - 50. Муфты включают...
 - 51. Механизмы колебательного движения включают...
 - 52. Расчет разъемных соединений производится...
 - 53. Расчет шлицевых соединений производится...
 - 54. Расчет фрикционных передач производится...
 - 55. Расчет ременных передач производится...
 - 56. Расчет цепных передач производится...
 - 57. Расчет зубчатых передач производится...
 - 58. Изготовление и термообработка зубчатых колес производится...
 - 59. Расчет цилиндрических зубчатых колес производится...
 - 60. Расчет конической зубчатой передачи производится...
 - 61. Расчет червячной передачи производится...
 - 62. Расчет передачи винт гайка производится...
 - 63. Основной расчеты валов и осей производятся...
 - 64. Расчет валов на усталостную прочность производится...
 - 65. Расчеты подшипников скольжения производится...
 - 66. Расчеты подшипников качения производится...
 - 67. Расчеты муфт производится...
 - 68. Механизмы прерывистого движения применяются...

Часть С (1 вопрос)

- 1. Если n1=1000 об/мин и n2=200 об/мин, то передаточное число...
- 2. Если d1=500 мм и d2=100 мм, то передаточное число...
- 3. Если z1=50 и z2=10, то передаточное число зубчатой передачи ...
- 4. Если z1=50 и z2=2, то передаточное число червячной передачи ...
- 5. Если m=2 мм и z=30, то делительный диаметр колеса равен...

- 6. Если модуль m=4 мм, то высота зуба колеса равна...
- 7. Если модуль m=2 мм, то шаг зубьев равен...
- 8. Если модуль m=4 мм, то высота ножки зуба колеса равна...
- 9. Если m=2 мм, z1=15 и z2=30, то межосевое расстояние зубчатой передачи равно...
- 10. Если u1=3 и u2=4, то передаточное число двухступенчатого редуктора равно...
- 11. Диаметр вала для подшипника №206 составляет...
- 12. Диаметр вала для подшипника №3705 составляет...
- 13. Передаточное число трёхступенчатого редуктора, если u1=3, u2=2 и u2=4 составляет...
- 14. Частота вращения ведомого вала, если n1=1000 об/мин и u=2 составляет...
- **15.** Частота вращения ведущего вала, если n2=500 об/мин и u=2 составляет...

ІІІ. ПАКЕТ ЭКЗАМЕНАТОРА

Количество вариантов задания для экзаменующегося – 1

Время выполнения задания – 30 мин.

Оборудование: Задание, бланк ответов, ручка

Эталоны ответов

№ задания № варианта	1	2	3	4	5	6	7	8	9	10	11	12
1												

Экзаменационная ведомость

IIIб. КРИТЕРИИ ОЦЕНКИ

Критерии оценки знаний

% выполненного объема задания	Оценка по пятибальной шкале
менее 50%	«2»
50%-75%	«3»
76%-90%	«4»
более 90%	«5»